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Abstract— This paper presents a general framework for
the definition and management of cooperative missions for
multiple Unmanned Aircraft Systems (UAS) based on the Robot
Operating System (ROS). This framework makes transparent
the type of autopilot on-board and creates the state machines
that control the behaviour of the different UAS from the
specification of the multi-UAS mission. In addition, it integrates
a virtual world generation tool to manage the information of
the environment and visualize the geometrical objects of interest
to properly follow the progress of the mission. The framework
supports the coexistence of software-in-the-loop, hardware-in-
the-loop and real UAS cooperating in the same arena, being
a very useful testing tool for the developer of UAS advanced
functionalities. To the best of our knowledge, it is the first
framework which endows all these capabilities. The paper also
includes simulations and real experiments which show the main
features of the framework.

Index Terms— Mutiple UAS, Robot Operating System, Sim-
ulation

I. INTRODUCTION

The applicability of Unmanned Aerial Systems (UAS)
in civil missions such as firefighting, critical infrastructure
protection or remote surveillance, among many others, is
clear nowadays. The multiple variety of platforms, control
systems and ground-based equipments, and the heterogeneity
of the communication devices have made difficult the inter-
operability among different systems. Each manufacturer has
produced its own infrastructure which manage the informa-
tion of the mission in a native format. This drawback implies
that complex missions with a broad range of autonomous
vehicles are highly complicated for planning, execution and
monitoring.

However, the Robot Operating System (ROS) [1] is the
’de facto’ standard for robot application development and it
is also used for the development of autonomous vehicles. Its
architecture and communications, based on topics, services
and actions, makes it ideal to control a distributed network
of sensor and actuator in a common work frame with well-
defined data structures. ROS is scalable and suitable for a
range of different platforms that can be easily integrated into
a single environment. Then, ROS is a very useful tool in the
context of multi-UAS cooperative systems.
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Until now, no many works can be found about multi-
UAS architectures implemented under ROS for the definition
and management of missions. For example, ATLAS [2] is
a framework developed for ROS that only addresses coop-
erative localization for Unmanned Aerial Vehicles (UAVs)
based on cameras and fiduciary markers. On the other hand,
the multi-UAV control testbed presented in [3] is focused
on a GPS waypoint tracking package and a centralized task
allocation network system (CTANS) developed under ROS.
In the field of central control frameworks, an interesting
event-based real-time Nonlinear Model Predictive Control
(NMPC) Framework with ROS Interface for multi-robot
systems is presented in [4].

Regarding teleoperation, the TeleKyb framework [5] is an
end-to-end ROS software framework for the development of
bilateral teleoperation systems between human interfaces and
groups of quadrotor UAVs. Also in the area of teleoperation,
considering the fact that the operation of multi-UAV system
may need multiple cooperative operators, an algorithm based
on position information and color information is described
in [6] to identify multiple operators. The results of hand
gesture recognition of multiple operators with UAV control
under ROS are also presented.

Some works related to virtual reality and multiple-UAS
can be also found. In [7], Unity-based virtual reality in-
terfaces are developed for immersive monitoring and com-
manding interfaces, able to improve the operators situational
awareness without increasing its workload. Three applica-
tions are presented: an interface for monitoring a fleet of
drones, another interface for commanding a robot manipula-
tor and an integration of multiple ground and aerial robots.
Also for Unity, ROSUnitySim [8] presents an efficient high-
fidelity 3D multi-UAV navigation and control simulator in
GPS-denied environments.

Closer to the topic of our paper, some works present an
approach for the control of an UAS swarm that performs
a task in a coordinated way. A guide to use ROS to fly
a Bitcraze Crazyflie 2.0, a small quadcopter platfrom, both
individually and as a group is presented in [9]. In [10], it
is proposed a support system for supervision of multiple
unmanned aerial vehicles by a single operator supervising its
cooperative behaviour. The FlyMASTER project [11] devel-
ops a software platform for cooperative swarming by high-
level control and supervision of multi-agent UAS systems
that is platform agnostic, capable of communicating with
any flight controller that implements the MAVLink.

Our paper presents ROS-MAGNA (ROS-based Multi-



AGent mission maNAgement), which is a general framework
to manage cooperative missions for multiple UAS based on
ROS. Its main contribution is to enhance ROS built-in tools
to offer the developer an abstracion layer for several features
required for a mission so to focus on obtaining research
results with less time and effort consumption. Multi-UAS
mission specifications are implemented as state machines
that control the behaviour of the different UAS indepen-
dently of its autopilot on-board. In addition, a virtual world
generation tool has been designed to offer an overall visual
understanding of the state of the main geometrical elements
and its progress on the mission. The framework is focused
on offering useful testing tools on the whole development
pipeline of UAS advanced functionalities, from simulated
software-in-the-loop and hardware-in-the-loop to real UAS
even at the same time and arena. As far as we are concerned,
no other framework endows all these capabilities

This paper is structured as follows. Section II describes the
general framework and the main role of each component.
Section III presents the modules running on the ground
station that controls the mission, except the component
concerning the modelling of the world, which is presented
in Sect. IV. The software running on-board the UAV is
described in Sect. V. Simulations and real experiments which
show the main features of the framework are included in
Sect. VI. Finally, Section VII closes the paper with the
conclusions and future work.

II. OVERALL FRAMEWORK

The general framework is mainly derived by the struc-
ture of ROS and its communications, with different nodes
distributed on the Ground Station (GS) or on-board the
aerial vehicles. Every node is subdivided into components.
Therefore, every node is governed by a parent component
and a network of other diverse, adjacent ones. Each com-
ponent is implemented as a Python class. The standard way
to introduce the different parameters of the mission is via
JavaScript Object Notation (JSON) files or on the top front-
end script.

Our software development is based on different tools. Re-
garding the low level, which interacts with the on-board au-
topilot, we have used a previous software development of our
research group called UAV Abstraction Layer (UAL) [12].
Thanks to its versatility, this framework can control UAS
with autopilots supporting the MAVLink protocol, and or
autopilots by manufacturers such as DJI and Crazyflie.
SMACH [13] is the ROS library applied for the mission
and UAS internal state machines. Visualisation tools such as
RViz [14] and SMACH viewer [15] provide a full compre-
hensive insight into the state of the mission.

Figure 1 offers a general view of the framework built
upon an architecture divided into the ground segment, which
is executed on land devices, and the aerial node, which is
designed to be run onboard the UAS but would also be
executed on land for simulation purposes. On top of it, the
master node is the front-end where the main features of the
mission are defined. It remains active from the beginning of

the collection of missions to be performed. For every new
mission, the master node spawns its corresponding GS, the
storage folders for the generated data and to start, if it is
required, the simulator.

A. Ground Segment Nodes

The next node in the hierarchy is the Ground Station (GS)
node, which embeds several utilities for the management
and control of the multi-UAS mission. The GS node is the
central node which sends coordinated commands to the rest
of nodes based on a State Machine (SM) that decides actions
depending on the current state of the UAS and the status
of the mission. It also reports about the performance and
success or failure once the mission is over. If an UAS is
simulated, the GS node also spawns the UAV nodes and
autopilot bridges.

The SM is built by using the SMACH library within
ROS. Coordination of the tasks of each UAS is achieved
by combining a sort of states corresponding to basic motion
primitives such as take-off, behaviours like following another
UAV and more complex state machine structures such as
the concurrence of various UAVs following different paths
synchronized to start at the same time. In addition to the
“nominal” behaviour during the mission, the actions to be
executed in case of emergency during any of the possible
states are also included in the state machine.

On the other hand, the GS node creates a world object
containing different geometrical elements of the scenario:
not only obstacles or 3D models of the objects in the
environment, but also “logical” objects related to the goals
of the mission or other abstractions that could be useful
to monitor the execution of the mission. Those geometries
are implemented with geometrical distributions of positions
referenced to accessible Free Space Poses (FSP) or obstacles
of variable shape. This is a more straightforward way to
reference poses related to zones or geometries instead of
using the global reference frame.

B. Aerial Segment Nodes

Regarding the nodes running on the computer on-board
the UAV, the main one is the UAV master node, which
manages its state and motion, receiving information from the
on-board sensors nodes as well as communicating with the
UAV Abstraction Layer (UAL) to receive the autopilot state
and to send navigation commands. The core node component
of this node receives the same name.

The UAV master node is also governed by a state machine,
which receives mission commands from the GS node and
splits them into single actions according to the current mis-
sion status. It listens and manages data from all its neighbour
UAS. The capabilities of this module are distributed into four
node components: Manager, Navigation Algorithm Interface
(NAI), Data and Configuration. These components will be
detailed in Sect. V.

The type of implementation for each UAS can be chosen
between Software-in-the-loop (SIL), Hardware-in-the-loop
(HIL) or real flight, so this node can be running on-board the



Fig. 1. General framework divided into the ground segment, and the aerial nodes designed to run on-board the UAVs although they can be also be
executed on ground if the UAV is simulated. On one hand, the ground segment presented in Sect. III, is composed of the master and ground station
nodes, the data storage folders and, in case it would be required, a simulator. On the other hand, the autopilot, UAL and the UAV nodes constitute the
aerial segment, exposed in Sect. V. The red arrows represent the generation of a new architecture component following a parent-child tree architecture.
Any kind of communication using the ROS network is represented by blue arrows. Black arrows correspond to the rest of existing data exchange. The
simulation possibilities are contemplated with striped lines, which highlight the components of the architecture which would be used or not depending on
the simulation level of each UAS.

UAV or on a ground computer. On the other hand, different
types of autopilots are supported. For all these reasons,
different parameters should be configured before starting the
simulation/flights.

Along with the UAV master node, auxiliary external nodes
such as the UAL and the autopilot nodes are also present
onboard. The level of simulation required defines which of
them are launched on-board or on the ground segment.

III. GROUND SEGMENT NODES

The nodes running on the Ground Control Station (GCS)
are described in this section except the world geometry
generation tool which is in the next section for the sake of
clarity.

A. Master Node

The master node is a single component that serves as
a front-end where the user selects the global parameters
that define such as the name of the world and mission.
In addition, different visualisation tools such as the Gazebo
simulator client, RViz and the SMACH viewer can be acti-
vated by the user. The master node creates the storage folders
where all the data gathered during a batch of missions will be
saved. Hence, the identifiers of the dataset and identifier of
the mission to be started within that dataset are also requested
to the user. In the initialization process, the master node
always spawns the GS node and then waits until the GS
node declares the mission finished and reports success or
failure and the critical events that may have happened during
the execution. Finally, the master node purges any remaining

opened node and stores the mission termination information
in the dataset.

B. Ground Station Node

Two different components are endowed in this node. The
central component controls the node, manages communica-
tion and information, and provides functions to implement
different behaviours. A second component implements the
state machine (SM) using the utilities offered by the central
one.

The core node component retrieves information from the
global parameters and the mission description file, where
the user has predefined configuration fields such as the
UAS model or the type of implementation for each UAS:
Software-in-the-loop (SIL), Hardware-in-the-loop (HIL) or
real flight. The world is created as part of this node and
remains accessible for future interactions. The SM is built
and executed while the core node component remains listen-
ing to information from the UAS (its state, critical events,
etc.), which is logged in the mission folder using the rosbag
mechanism for debriefing purposes.

Each task accomplished by the GS node is referenced to
a unique state. Those tasks would entail an internal flow of
information or communications exchanged with any of the
UAS. Given that diversification, two SMACH state types are
employed to accomplish each of them. For the duties that do
not require ROS communications, CallBack States (CBS) are
employed, which only deploy a standalone execution. Some
examples of CBS are:

• New world. Execution of the world modelling tool to



create the virtual 3D environment and let it available
for later access.

• Spawn UAS. Several spawn features such as the identi-
fication number, the location in the simulation or model
previously defined in the mission SM are now employed
to launch and activate the corresponding nodes and its
control.

• Waiting. A period of idle time or waiting for user
interaction via the keyboard.

In contrast, in order to implement states that require
communication with the aerial segment nodes, Simple Action
States (SAS) are employed. SAS fulfil a goal message with
the objectives that the target UAS must accomplish and send
it as a ROS action. After the UAS has performed the action,
it sends back a response that is finally analysed by the SAS.
Consequently, for each possible SAS action sent from the
GS, there exists another state on the UAS SM that acts as a
server. The main examples of SAS are:

• Take-off & Land.
• Basic Move. A movement in a single axis with a

position or velocity setpoint.
• Follow Path. A list of static waypoints is followed based

on a given algorithm which can control the UAV in
position or velocity.

• Follow UAS at a distance. The UAV pursuits a dynamic
goal until the target bounding sphere of a defined radius
is reached.

• Follow UAS at a position. The goal pose is translated
to a defined relative position from the followed UAS.

• Store data. The information retrieved during the simu-
lation is saved in CSV format on disk.

The GS node state machine is a child node component
which specifies how a mission should be executed taking
as input the mission file described in JSON format. Then,
this node component acts as a translator from JSON to
the SMACH tool mapping also the required functions on
each state. Every state callback is defined and grouped into
state types. Those callbacks are employed while assembling
them into nested structures such as simple state machines,
concurrences or sequences. The outcome mapping must be
according to the possible outcomes of each state, and it is
directly retrieved from the mission definition file. In Fig. 2,
a sequence state machine nesting the concurrence of three
UAS following waypoints for their coordination is shown.

IV. WORLD MODELLING
The third module implemented on the GS node accom-

plishes the task of creating the virtual 3D environment to
monitor the execution of the mission. Every geometrical
element involved in the mission apart from UAS is generated:
space segmentation, real or simulated objects and available
positions of the space that can be accessed for different
purposes called Free Space Poses (FSP). Figure 3 depicts
the hierarchy where every new nested lower level offers def-
inition independence from its upward grandparent. Provided
that, for instance, a geometry would not need to be referred
to the world frame, but only to its associated volume.

Fig. 2. The state machine for the coordination of two UAS following
waypoints concurrently taken from SMACH Viewer. The outer box encloses
a Sequence SM that includes two nested SM in a row defined by the
“completed” outcome. Each of those nested SM correspond to the n-th
waypoint of the path and is built out of a Concurrence SM. Inside each
Concurrence SM, two states are activated at the same time. Each state
corresponds to a different UAS and are of Follow Path SAS type.

Fig. 3. World element tree modelling architecture. Each of the elements
of a level would contain several of the elements of the lower level. A single
world is the unique, global reference frame. Several volumes segment the
scenario as parents of nested child groups of geometries that compose the
shape to be defined. Geometries would be provided of different shape types
and enclosure a sort of logically located poses that may be used to create
obstacles or free space poses provided to poses of a path on the mission.



For any new element on each level, there exists a new
world component so every parent would contain any number
of objects of every type of child. A JSON file describes
the whole world architecture and the characteristics of every
element. The top world component retrieves that definition
and splits it into the definition of the volumes. On the
same way, each parent element splits that definition on the
corresponding for itself and every child and provides it on
its creation. Every world component provides functions to
retrieve information from itself and its child objects in order
to make every element accessible from the GS node.

A. Volume

The first level under the world frame is the volume, whose
function is to gather various geometries around a single
frame so all of them would be relocated without redefining
the volume construction, as long as giving some standard
features to all of them.

B. Geometry

Inside every volume, geometries with different shapes are
used to model different restrictions within the scenario. The
basic primitives included are a cube, a sphere, a cylinder and
a prism.

Specific world components concerning the shape inherit
a primary component for common utilities of a general ge-
ometry. The general geometry component manages standard
features such as dimensions, name or origin. It also provides
core functionalities for the transmission of data and the
auxiliary generation of geometric structures that are later
specifically employed by each shape. A list of the main
functionalities is provided in Table I.

TABLE I
THE GENERIC INHERITED COMPONENT OFFERS CORE FUNCTIONALITIES

FOR THE TRANSMISSION OF DATA AND THE AUXILIARY GENERATION OF

GEOMETRIC STRUCTURES. SPECIFIC COMPONENTS EXTEND

FUNCTIONALITIES DEPENDING ON THE SHAPE.

Function Provider world
component

Raw random values Matrix Generic
Generate Obstacle/FSP from Matrix/List/Coords Generic
Generate Poses sets Matrix Generic
Generate Random Poses Generic
Generate Random Dimensional Values Generic
Generate Path Generic
Lines intersection Generic
Polygon-lines intersection Generic
Zigzag from matrix poses Generic
Get Obstacles Generic
Get FS Global Pose from Matrix/List/Path/Coo Generic
Make/Erase RViz Marker Generic
Poses Matrix Specific
Random Poses Specific
Perimeter Poses Specific
Edges Poses Specific

C. Pose arrays

Geometries provide groups of 3D poses gathered into
arrays. Those would be extracted from features of the shape,

such its edges or 3D matrices that fulfill the interior of the
shape along certain axes. Besides, other point arrays would
be independent of the shape as it would be the coordinates
from the Geometry origin. In addition, both kind of poses
may be used to generate geometric elements that produce
new pose arrays, such as intersections.

All those poses would be later used to define obstacles
or FSP on it. Besides, poses arrays are also employed as
supporting structures, that combine with each other with the
purpose of constructing or finding more complex geometrical
compositions. An example of it would be the use of a
matrix of poses generated by a Generic Geometry function
in addition to the perimeter of a prism provided by a Specific
Geometry function. As a result, only the poses of the matrix
enclosed by the perimeter would be extracted.

D. FSP and obstacles

The Free Space Pose is an available position of the space
that can be accessed for different purposes. A single world
component is the interface to operate with it. A transform
is employed to be able to refer the FSP for its parent frame
and the global frame.

More complex is the obstacle component, which is focused
on managing the information of a single obstacle and spawn-
ing it where required. Thus, everything concerned with that
obstacle deals with this world component or with information
generated by it. Also using a transform, RViz marker and
gazebo model would be spawned on its corresponding place
and orientation. Offered shapes of obstacles in Gazebo are
cubes, spheres and cylinders and their dimensions are fully
customizable. Some functions are also required to deal with
the information of the obstacle as the removal of the model
or its global position computation.

E. Auxiliary world components

Transformation broadcasters, RViz markers and RViz poly-
gon arrays are used for world components at every level of
the world hierarchy. They would be thought as the leaf nodes
of the world hierarchy tree.

Transforms are used to cope with pose generation on the
ROS network and are useful to reference them to other
frames, not only for visualisation purposes. RViz markers
and polygon arrays must define and dynamically manage the
message of generation, update and removal that defines any
shape that the world works with.

V. AERIAL SEGMENT NODES

In this section, the nodes running on-board the UAV are
described. However, it should be noticed that the UAS can
be also simulated or the UAV can be so light that it is not
possible to put a computer on-board. In these cases, these
nodes can be also launched on a ground computer.

The presented framework has a single node designed to
manage the UAV. This node receives through ROS infor-
mation from its on-board sensors as well as the state of
other UAVs. It also interacts with the UAV Abstraction Layer
(UAL) [12] to control UAVs with autopilots supporting the



MAVLink protocol, and/or autopilots by manufacturers such
as DJI and Crazyflie. As a consequence, the UAL node must
be also running on-board the UAV along with the autopilot
driver. This section is focused on the UAV master node and
the different node components employed: core management
of the UAV, the state machine which coordinates the actions,
the Navigation Algorithm Interface to implement different
strategies, an object that deals with the data corresponding
to each UAS and another which controls the configuration
of the communication and other features.

A. UAV Manager

This core class initiates the node and creates the required
instances of the rest of classes. A single UAV state ma-
chine and a single UAV Navigation Algorithm Interface are
generated. Functions are offered to accomplish the different
roles, which are similar to those explained in Sect. III-B and
selected as SimpleActionNodes.

The data from the GS is retrieved and mapped to internal
variables. Any auxiliary function is called if needed to
transform the goal into useful data such as translation to
ROS variables, the desired path to be smoothed sent to
the corresponding nodes or translation of the goal from the
target UAV in a “Follow UAV At Position” behaviour. The
NAI provides the reference for the velocity based on the
algorithm chosen. Once the goal and the strategy to arrive
are appropriate, the UAL is used to give the next command
to the autopilot.

Before the state machine is executed, possible preemption
messages are listened from the GS node. The communication
is based on states, but some of them are automatically started
when internal features are changed such as the desired goal
and followed path sent to the RViz viewer or the state
update to the GS node. The most important of them is the
an evaluator, whose duty is to check if any collision, GS
node notification or battery warning has occurred. In case
any critical event is detected, the state is changed, and the
GS node informed. It also gathers all the data for mission
debriefing purposes.

B. UAV State Machine

How all the possible events fit in a timeline is the problem
solved by this class. A mission is an ordered set of the
already known actions performed by each of the UAS,
coordinated by the GS state machine defined by the user
in the JSON mission file. Since an UAV can perform only
one task at a time, the current state must be assessed to let
new commands from the GS affect just in case the UAV has
finished the previous behaviour.

Every UAS has the same state machine since all of them
are expected to execute the standard movements, behaviours
and management tasks. Every state callback is available since
the beginning to be requested. Hence, the basic structure can
be seen as a star-shaped state machine with a central static
state as the core and different Simple Action Server states
located on each corner. SMACH wrappers are employed to
deal with the Action Servers.

On the central state, every action is offered through
ROS, and when it is being performed, only a preemption
notification would be accepted from the state machine. Once
the action has been accomplished, and the response sent, the
state machine drives back to the central state.

Available wrapped SimpleActionStates correspond to the
ones referred to in the GS node section. When the GS node
has requested a specified action, the goal is translated to
comprehensive variables, and the corresponding UAV master
function is executed.

C. UAV Navigation Algorithm Interface

The Navigation Algorithm Interface (NAI) module pro-
vides a powerful tool to the researcher as it allows to
easily test new navigation algorithms. In addition, it endows
some already built-in modules as a reference, such as a
simple greedy guidance algorithm, the Optimal Reciprocal
Collision Avoidance (ORCA) algorithm [16] and an interface
to TensorFlow [17] sessions. The simple greedy guidance
calculates the distance and direction to the target from the
current position and applies the desired speed to compute
the velocity vector. ORCA receives the current position
and velocity of every UAV on the scenario as well as the
own desired velocity to provide the optimal velocity free
of collisions by implementing a velocity field. To work
with TensorFlow’s machine learning techniques, a function
uploads a pre-trained graph and start a session to evaluate
the current conditions of the scenario as inputs, and a neural
network returns the optimal velocity to apply as output.

As it was mentioned above, the NAI module is designed
to be an interface to any new algorithm to be tested. On the
scope of this class, all the information about the UAS and
its environment is continuously available during the mission
as input to the algorithm to be tested. In addition, various
outputs can be mapped into control signals to the UAL apart
from the velocity. For instance, the selection of adjacent FSP
as next target optimizing any cost function is straightforward.

The NAI class can offer its maximum potential when dif-
ferent algorithms are employed at the same time to optimize
various steps of the decision-making chain. The fact that all
of them would work inside the same data structure would
make it easier to concatenate different task solver algorithms
uniformly.

Other auxiliary functions are offered to make easier the
implementation of the algorithms. A hovering function re-
turns a zero value velocity message. Saturation upper and
lower strains a value provided the limits. A neighbor selector
function calculates the distances to all the UAVs and static
obstacles in the environment and provides a sorted list with
the identification of the nearest along with the distance.

D. UAV Data and Configuration

Each of the objects created from these classes are focused
on a single UAV. Them, the UAV manager needs a list of the
available UAVs on the scene with their associated relevant
information.



TABLE II
MAIN FEATURES OF THE UAV MANAGED BY THE UAV DATA PYTHON

CLASS.

Feature Description

UAL state Codification about landed, armed or flying among
others.

Pose Current stamped local, Cartesian pose.
Velocity Current stamped Cartesian twist.
Battery level Percentage of remaining battery.
GS critical
event/preempt
command

Command from GS node to finish current be-
haviour.

Path
smoothing
velocity

Optimal velocity according to the path smoother
nodes.

Sensor driver
comms

For instance, depth camera pixel info.

The UAV Data is mostly passive: it gets data which
is generated outside the ROS network. That information
is processed and translated to the UAV data so the UAV
manager can get access to it. It would also be used to
treat that data and republish it to, for instance, improve its
visualization. The main information that UAV Data copes
with is listed in Table II.

In an ideal situation, a fully standardised interface as UAL
would be enough to deal with each model and autopilot
and its singularities. Nonetheless, it is a better option to
rely on an intermediate bridge more customizable inside this
framework.

UAV Configuration takes the information about the UAL
selected on the mission definition and extracts all the model
information from a specific JSON file. After combining both
information sources, particular features as the security radius,
maximum speed or implementation (SIL, HIL or real) are
mapped to internal values of the UAV master node.

VI. SIMULATIONS AND EXPERIMENTS

Simulations and real experiments which show the main
features of the framework are described in this section.
Several videos of them are available at https://grvc.
us.es/icuas19multi: For each setup, two videos (full
mission and edited) are provided with a recording of the
simulation/reality, RViz visualization and state machine tran-
sitions.

A. Setup I: Battery level safety with collision-avoidance

The first setup involves two PX4 Iris UAS simulated
software-in-the-loop in Gazebo. The role of the first UAS
is to follow a segmented delivery path whereas the task
of the second one is to film the first UAV at different
relative positions during the mission. Elapsed in periods of
15 seconds, the second UAS tries to follow at 3 meters on
the x-axis, at 3 meters on the z-axis and at 2 meters on
the y and x-axes. Given the fact that both of them traverse
a volume with obstacles, the collision avoidance algorithm
ORCA is employed continuously. The smoothing path nodes
are used to select the desired velocity input for ORCA and

a SMACH state machine is designed to perform correctly
the tasks explained as well as to manage any critical event
occurred.

The first segment of the path followed by the first UAS
is collision-free and the second one achieves the different
relative positions successfully. During the execution of the
second segment, the first UAV runs out of battery. Hence, an
adjacent recharge state machine is activated inside the path
following state. That recharging state machine consists on
a return to home, land, wait for the pilot to notify charge
completed, take-off and return to the prior state. During the
process, the first UAV is still performing its filming task at
the last relative position.

Figure 4 shows a screenshot taken during the mission.
The situation of successful execution and recharge landing
are included along with the battery recharge nested state
machine. Full videos can be found at https://grvc.us.
es/icuas19multi#SimulationI.

B. Setup II: Collision safety

The simulation conditions are the same as well as the sce-
nario. The role of the first UAS is also delivering. However,
the second UAS should maintain a distance of two meters
with respect to the first one disregarding its relative direction.
The state machine used is the same, although other branches
will be relevant in this setup. The main difference is that
no algorithm to avoid collisions is employed. Thus, the first
obstacle in the path is detected to collide in a short time with
the first UAV, which stops its current state and sends to the
GS node a notification of a critical event. The notification
is resent to the other UAS involved in the mission. Both of
them start hovering and, after a safety period for the pilots
to take their control, they land.

Figure 5 shows a screenshot of the mission abort instant
and its concerned state machine branch. Full videos of the
simulation can be downloaded from https://grvc.us.
es/icuas19multi#SimulationII.

C. Setup III: Multi-platform coordination

This larger scale experiment is designed to show the
main features of this framework. First, platform agnosticism
is achieved thanks to the connection to the UAL. A PX4
(drone 1) and two DJI UAS (drones 2 and 3) are employed.
Then, different levels of simulation are used: Drone 1 is SIL
simulated with Gazebo, drone 2 is real with every dedicated
node running on an Intel NUC on-board a DJI F550 frame
and drone 3 is another DJI whose dynamics are simulated on
a computer but a real autopilot device is used HIL. Finally,
the potential of the World module is applied to build a solar
photovoltaic plant and locate panels on a sorted position
beneath an inspection zig-zag path.

The photovoltaic plant Cañamero, in Caceres (Spain) has
been modelled. The western group of three zones of panels
has been extracted to allocate each zone to an available UAS.
Each panel zone is applied to a volume of the World module.
Inside each volume, three different prismatic geometries are
used to define the panel height, the inspection altitude and



Fig. 4. Setup I screenshot and state machine. The top image presents
an RViz visualization of both UAVs crossing an obstacle volume. The first
UAV follows a delivery path, whereas the second one films it at 3 meters
above. The ORCA algorithm assists both UAVs for obstacle avoidance. The
bottom image shows a safety state machine to deal with the possibility of an
UAV in a low battery state. The state machine that implements the delivery
path of the first UAV is composed of altitude checking, delivery path and
return to home. For each of those states, independently from the actions of
the rest of UAS, if the UAV receives a low battery warning, it enters in the
state machine “battery recharge path”. That state machine is not shown for
the sake of clarity and it is composed by return to home, land and wait for
the user to notify the full recharge. Finally, a take-off is commanded, and
the mission continues, exiting “battery recharge path” and coming back to
the “delivery state”.

Fig. 5. Setup II screenshot and state machine. The top image shows
a RViz visualization of the UAVs without collision avoidance algorithm
navigating towards an obstacle. The first one (UAS 1) follows a path and
the second UAV (UAS 2) pursuits the first one at 2 meters when an imminent
collision is detected by UAS 1 and an alert is sent to the GS node which
broadcasts it. Both UAVs hover and safely land. The bottom image presents
the state machine for the safety collision detection. Both UAS were into the
normal mission state. When UAS 1 detects the collision and UAS 2 receives
the alert, that state outcomes a collision and a concurrence state machine
makes them both hover by a Basic Move SAS. A safety wait CBS lets the
pilots take control over the drones. In case it does not happen, another two
concurrence state machines with SAS let the UAVs store the data and safely
land.



the approximation altitude. Panel height geometry is fulfilled
with a pose set built from a matrix and its poses included
into a polygon. The inspection altitude geometry is used to
construct a zigzag with the intersections of parallel lines with
the perimeter. A different approximation altitude is used for
each drone. Drones 1 and 3 employ a path follower node to
smooth their trajectory (velocity control), whereas drone 2
directly uses position commands.

At the beginning of the mission, every UAS takes off at
the same time and follows its own path independently. The
state machine counts with both safety branches described on
the first two setups.

Figure 6 shows a photo taken during the flight along with
the visualization of the constructed virtual scenario in RViz.
Videos of the full setup are available at https://grvc.
us.es/icuas19multi#ExperimentI.

VII. CONCLUSIONS AND FUTURE WORK

The implementation of the framework along with
several built-in use examples can be found in the GitHub
repository https://github.com/JoseAndresMR/
ros_magna under the MIT License. The framework
allows to implement different cooperative strategies while
maintaining group and individual safety thanks to the
different state machines that can be implemented. The
interface on the UAS on-board node has been tested with
the implementation of different navigation algorithms. In
addition, different virtual worlds has been modelled and
used for the simulations and experiments.

Future work covers the full range of presented modules
since it is on going work. It would be interesting to im-
plement also a real-time teleoperation interface within the
framework as well as a graphical user interface for the
definition of the mission global parameters and real-time
monitoring. Regarding the world modelling, more shapes and
geometrical elements as well as the possibility to dynamic
transform them during the execution of the mission are
considered as next steps.
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