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Abstract— Most existing aerial robotics testbeds have
significant set-up and maintenance costs that restrict
their use. This paper presents a low-cost multi-drone
testbed for agile and safe performing proof-of-concept
experiments. It uses low-weight, low-size Crazyflies drones
and low-cost lighthouse positioning system for drone pose
estimations. Its flexible and modular ROS-based archi-
tecture can be used to easily test multi-drone perception,
control and planning techniques and can easily integrate
bigger drones. The presented testbed does not require a
dedicated room and can be set-up in less than one hour.
The paper presents the testbed and validates its operation
with multi-drone target tracking experiments.

Index Terms— UAS Testbeds; Micro- and Mini- UAS;
Sensor Fusion

I. INTRODUCTION

The increasing interest in aerial robotics tech-
nologies has motivated the need for tools that
enable the quick development of proof-of-concept
developments or tests. Several open software
frameworks, libraries and tools are aligned with
this tendency offering a hugely wide range of com-
patible software tools ready to use or to integrate in
larger projects with very low or no cost and involv-
ing low development efforts. ROS [1] or OpenCV
[2] are good examples of these tools. However,
despite these efforts in the software components,
there is still lack of low-cost agile hardware tools
for aerial robots testing and experimentation.

Most aerial robotics laboratories around the
world are equipped with drone testbeds, most of
them are indoor testbeds. However, the implemen-
tation and maintenance of these testbeds is com-
plex and expensive. They often need a dedicated
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room and a motion capture system capable of
providing drone pose estimation with very high
accuracy and very low delay. These are significant
constraints for some small and medium companies,
which are forced to rent drone testbeds, or to
educational centers, which often have to refuse
using them for teaching in undergraduate or Master
degree courses.

This paper presents a low-cost multi-drone
testbed for agile and safe performing proof-of-
concept experiments. It uses low-cost, low-size,
low-weight Crazyflie platforms, which are easy-to-
use drones with simple and flexible hardware. The
testbed uses a lighthouse positioning drone sys-
tem, a low-cost system capable of providing local
poses with accuracies in the range of cms with
sufficiently low delay. The presented testbed uses
a flexible and modular architecture based on ROS
that can be used to easily test multi-drone percep-
tion, control and planning techniques. Besides, it
can integrate bigger drones by simply changing the
motor drivers and frames, without modifying any
other module of the testbed modules. The testbed
can be easily and quickly deployed and calibrated
without requiring a dedicated room. Several papers
have used Crazyflies to experiment the technique
that they are presenting, see e.g. [3]. However,
to the best of the author’s knowledge, this is the
first low-cost agile general-purpose multi-drone
testbed that has been reported. We believe that the
presented testbed is useful for quickly perform-
ing proof-of-concept tests. It is also a low-cost
alternative to traditional indoor testbeds for small
companies and can also be used for educational
purposes in undergraduate and Master courses.

This paper is structured as follows. Section
II summarizes the main types of UAS testbeds
that have been developed. The architecture of
the presented testbed is briefly presented in Sec-



tion III. The main hardware components are de-
scribed in Section IV. Section V briefly describes
the multi-drone target tracking technique imple-
mented, which proof-of-concept experiment in the
testbed is summarized in Section VI. Section VII
presents the main conclusions and future work.

II. RELATED WORK

Many testbeds for experimentation with UAS
have been developed, see e.g. [4], [5]. They can be
coarsely classified in indoor and outdoor testbeds.
Most research-focused indoor testbeds employ ex-
pensive infrastructure, such as accurate positioning
systems such as VICON or OptiTrack [6], [7].
These systems require a dedicated space and have
high purchase and maintenance cost, often requier-
ing personnel for its maintenance. There are also
outdoor testbeds that are used for experimenting
with large drones that need to fly in open areas
[8]. Although outdoor versions of camera-based
motion capture systems have been developed, their
high cost for covering large scenarios recommend
the use of localization systems, such as accurate
RTK GPS systems. The cost, maintenance, risks
and safety procedures when working with big
drones make them unsuitable for performing quick
proof-of-concept experiments.

The indoor testbed presented in this paper ob-
tains accurate UAS pose estimations using the
lighthouse positioning system. These systems have
been recently used in Virtual Reality (VR) posi-
tioning, e.g. [9]. Similarly to camera-based sys-
tems such as VICON, it is necessary to set up the
lighthouse base stations around the drone flying
arena. However, the sensing principle is the oppo-
site: while in camera systems the light from drones
are received by the cameras, in lighthouse systems
each base station generates sweeps of infrared
light that is received by the light receivers on-
board the drones. The good accuracy of lighthouse
positioning systems has been analyzed in several
works, see e.g. [10]. For instance, works such as
[11] indicate some small modifications to further
improve their pose estimation repeatability and
accuracy. In fact, lighthouse systems have been
used to provide ground truth pose estimations in
VR systems.

In the presented multi-drone testbed we propose
the use of lighthouse 1 positioning systems to

provide the ground truth drone pose estimates. The
big advantage of lighthouse positioning systems is
their cost: which is hundredths lower than those
of camera-based systems such as VICON. Another
advantage is that the pose estimation is calculated
on-board each drone, whereas in camera-based
systems it is computed in a ground computer.
Hence, each drone can perform flight stabilization
and trajectory control with lower delay compared
to external visual positioning systems.

III. ARCHITECTURE

The testbed presented in this paper has been
developed to address a threefold objective. Firstly,
it is low-cost and save, therefore can be used for
agile testing of techniques by users that do not
necessarily have to be experts. From a scientific
perspective, it can be used as a tool to test proof-of-
concept developments. From an application point
of view, it can be used as an initial step in the de-
velopment of techniques before testing in the real
application. The same experiment can be repeated
many times with the same or different conditions
and configurations to assess its performance.

The main design requirements can be sum-
marized in the following: safety to allow users
with low expertise and know-how levels; low cost;
openness and flexibility to allow testing different
perception, control and planning techniques; ROS
compatibility to enable testing ROS-based tech-
niques; scalability to enable using large number
of drones in the same experiment.

Figure 1 shows a simplified scheme of the ar-
chitecture of the presented testbed. Although only
one drone is shown in Fig. 1, the architecture
can include a high number of drones. Two main
types of modules can be found. Those that are
executed in the Central Computer and those that
are executed on-board each of the drones.

The testbed uses the Crazyflie 2 multirotor plat-
forms developed by Bitcrazy, which have been suc-
cessfully used in various projects and researches,
see e.g. [12]. Crazyflie multirotors are open and
flexible platforms that can be easily hardware and
software customized. In our testbed we adopted
this aerial platform and added some hardware
and software modules to provide the testbed with
higher capabilities for performing higher number
of experiments.



Fig. 1. Simplified scheme of the architecture of the presented
testbed.

The modules running in the multirotors include
the Crazyflie firmware, radio, sensors and expan-
sions, motor drivers and optionally, a camera and
the video transmitter. The Crazyflie firmware is the
core of the drone: it executes the low level control
and communicates with other electronics boards
and sensors. The radio allows the multirotor to
receive internal parameters and commands, and to
transmits the drone state and sensor measurements.
The motor driver controls directly the currents
given to the motors. It can be noticed that the
testbed enables using bigger drones by modify-
ing the motor drivers and without modifying any
other module. Crazyflies use direct-current micro
motors. These motors can be substituted by more
powerful three-phase UAS motors by adding also
a variable frecuency drive to control these mo-
tors. Hence, bigger multirotor frames with higher
payload can be used in the testbed without any
firmware or software change, only changing the
drone physical parameters.

The sensors and expansion module includes an
IMU and a lighthouse deck for pose estimation
and a pressure sensor. We added a small visual
camera. However, the Crazyflie microprocessor
does not have high processing capacity, and only
can process low resolution images at low frame
rate. To handle high resolution cameras it is nec-
essary to add: 1) a electronic board to include
onboard image processing capabilities or 2) a
video transmitter to send the images to the ROS
Computer, where the image processing algorithms
are performed.

The testbed includes a Central Computer run-

ning ROS. It includes software modules that can
be flexibly changed and modified for each exper-
iment. Modules Crazyradio driver and Crazyflie
server manage the USB drivers and communica-
tion protocols to share data and commands with the
multirotors. Crazyswarm [12] provides ROS topics
and services to share the data and commands with
multiple multirotors using standard ROS nodes. It
also includes user-defined modules Perception and
Planning where an user can program the tech-
niques to be experimented. These modules have
access to the multirotor sensor measurements and
states and can be used to command the drones, for
instance to follow a trajectory or perform more
complex actions. Finally, the Central Computer is
connected to the Emergency Stop module, which
is a physical switch that stops all the motors of
every drone in the system.

IV. HARDWARE

Figure 2 shows a picture of the presented testbed
deployed in an improvised 2x2 space, evidencing
the testbed flexibility. The HTC VIVE base stations
can be mounted on tripods, and Central Computer
can be a laptop. The calibration of the lighthouse
localization system is also very quick, enabling
quick and easy set-up.

This section summarizes the main hardware
components of the presented testbed.

A. Crazyflie 2 multirotor
Crazyflie 2 platforms are cost-efficient, safe (low

weight, low size) and flexible platforms with open-
source software tools. Figure 3 shows three of
the drones used in the experiments. One basic
Crazyflie 2 platform is shown in Figure 3-left.
Figure 3-center shows one platform equipped with
the lighthouse deck used for pose estimation. The
lighthouse deck has four IR receivers and its own
FPGA to process the IR received signals and
obtain the position estimate of each IR receiver
on the board. One of the platforms used in the
reported experiments is shown in Figure 3-right. It
is equipped with the lighthouse deck and an ultra
lightweight nano-camera. A detail picture is shown
in Figure 4. Figure 3 also shows the Crazyradio,
a 2.4GHz transceptor with an USB interface to
teleoperate the Crazyflie drones. Each Crazyradio
is able to control a group of Crazyflies, depending



Fig. 2. The presented tested installed in an improvised 2x2 space.

on the amount of data transmitted. Using only 3
Crazyradio, 49 Crazyflies are operated in [12].

Fig. 3. Crazyflie platforms and Crazyradio used in the presented
testbed.

The simple hardware design of Crazyflies, in
which the electronic board is the main part of the
multirotor frame, allows these nano-drones to fly
carrying several lightweight onboard sensors. This
fact enables these multirotors being a fairly power-
ful flying testing devices of only 35g (including the
lighthouse deck) suitable for the presented testbed.
A Crazyflie equipped with a lighthouse deck is
able to fly for around 6-7 minutes. The use of

Fig. 4. A detail picture of one Crazyflie drone used in the
experiment. It is equipped with the lighthouse deck and a nano-
camera.

a nano-camera increases the energy consumption
and reduces the flight time to 4-5 minutes, which
it is still enough to perform many proof-of-concept
experiments.

In the testbed we used as firmware the Crazyflie
master branch modified to obtain drone orienta-
tion using the lighthouse system and not only
its IMU. We updated the master branch with an
SVD (Singular Value Descomposition) optimiza-
tion algorithm based on [13] in order to obtain the
drone orientation. SVD optimization was chosen
due to the accuracy and stability of the algorithm
as shown in [14].

B. Lighthouse tracking system

Currently, the only commercial lighthouse sys-
tem is the HTC VIVE virtual reality system [9].
The HTC VIVE system is comprised of lighthouse
decks, which emit synchronized light sweeps, and
trackers that use IR receivers to measure light pulse
timings for estimating the horizontal and vertical
angles to the lighthouse decks. The lighthouse deck
on-board the Crazyflies has four IR receivers. The
Crazyflies uses the angles obtained by each IR
receiver to obtain its pose employing the SVD op-
timization algorithm to obtain the rotation matrix
of the drone pose.

Figure 5 shows the HTC VIVE base stations and
the tracker. The tracker is necessary only for the
calibration of the HTC VIVE system. HTC VIVE
base stations need to synchronize their IR sweeps.
In outdoor experiments wireless synchronization
can fail: some works recommend the use of a syn-



chronization cable for outdoor experiments. In our
indoor experiments we did not notice such issues
and wireless synchronization worked satisfactorily.

Fig. 5. HTC VIVE Base Stations (left and right) and Tracker
(center).

It is recommended to mount the base stations
maintaining 90° between them in order to obtain
the best ground truth drone pose estimations. Typ-
ically, they are mounted at 45° with the floor plane
and in two top faced edges of the room, in order to
avoid occlusions and to get good pose estimations.
The maximum distance between both base stations
of the testbed is 5 m, limiting the maximum size
of the testbed.

V. MULTI-DRONE TARGET TRACKING

The presented testbed allows performing fairly
realistic proof-of-concept experiments. This sec-
tion summarizes a multi-drone target tracking
method that has been experimented to show its
capabilities.

The requirements of the target tracking method
can be summarized in the following: low compu-
tational burden, robustness to noise and data loss,
distributed computation and low communications
burden. We adopted a scheme based on Recursive
Bayesian Filters (RBFs) to integrate the camera
measurements from all the drones involved. We
selected an Information Filter (IF) due to its com-
putational efficiency and numerical stability. The
target tracking method that is experimented in the
testbed is a simplified extension of that described
in [15].

Information Filters (IFs) are parametric RBFs
that employ the canonical Gaussian representation,
which is based on the information vector ξ = Ω−1µ
and the information matrix Ω = Ω−1, where µ and
Ω are the mean and variance of the distribution.
IFs are dual to Kalman Filters (KFs) and are more
suitable for cases with simple prediction model and
high number of measurements, as in our case.

We selected a simple state vector typical in tar-
get tracking, xt = [xt, yt, zt, vxt, vyt, vzt]

T , where
(xt, yt, zt) is the 3D target location at time t and
(vxt, vyt, vzt) is its local velocities. IFs require
a prediction model and a measurement model,
both assumed under White Gaussian noise with
covariance matrices Rt and Qt. For the prediction
we used a simple rectilinear motion model to
represent the target local motion.

The observations are the coordinates of the
center of the target in the image plane of the
camera. Let zj,t be the measurement gathered by
camera j at time t:

zj,t =

[
xj,t
yj,t

]
= hj(xt), (1)

where hj(xt) is the observation model obtained
using the camera pin-hole model. hj(xt) is a non-
linear function. Thus, we need to use the Extended
Information Filter (EIF), which linearizes hj(xt)
by its Jacobian:

Hj,t =
∂hj(xt)

∂xt

(2)

One advantage of IFs over KFs is their ca-
pability to integrate measurements obtained in a
distributed manner, e.g. by different drones. The
Prediction stage of the IF must be executed in
one central drone but the Update stage can be
performed in a fully distributed way. We imple-
mented a distributed version of the EIF in which
each drone computes its contribution to the EIF
and sends it the central drone, which integrates
all the contributions and computes the Prediction
stage. Although the detailed description of the
implemented method is omitted for brevity, the
following paragraphs summarize the performance
of the implemented EIF.

The operation of the EIF for time t is as follows.
The predicted state for time t, Ω̄t, ξ̄t and µ̄t, is



assumed available. It was computed in the iteration
at t− 1 by the central drone. At time t the central
drone first broadcasts the predicted state µ̄t. Each
drone j that receives the prediction computes its
Jacobian Hj,t, takes a measurement zj,t from its
camera and computes its contribution to the EIF
update stage (Ωj,t and ξj,t) as follows:

Ωj,t = HT
j,tQ

−1
j,tHj,t (3)

ξj,t = HT
j,tQj,t[zj,t − hj(µ̄+Hj,tµ̄)] (4)

The central drone i is also equipped with a
camera: it also computes its Jacobian Hi,t, takes
a measurement zi,t and computes its contribution
to the EIF Update. Next, each drone transmits
to the central drone its contribution Ωj,t and ξj,t.
The central drone receives the packets, extracts the
contributions and computes the updated state by
adding the contributions from all drones (including
its own contribution), as follows:

Ωt = Ω̄t + Ωi,t +
∑
j

Ωj,t (5)

ξt = ξ̄t + ξi,j +
∑
j

ξj,t (6)

The measurement update stage in IFs is achieved
by summing up the contributions from different
cameras. Each drone broadcasts the predicted state.
The rest of the drones compute its contribution to
the EIF update and transmit it back to the source,
which only has to add the contributions it receives
in order to recover the updated state.

VI. EXPERIMENTS

This section presents how the presented testbed
can be used to perform multi-drone target tracking
proof-of-concept experiments. The experiments
were implemented under C++ and ROS following
the architecture shown in Figure 1. Figure 6 shows
a picture taken during the multi-drone target track-
ing experiments. The figure on the top shows the
Central Computer, some Crazyflies (marked with
red circles), the HTC VIVE lighthouse base stations
mounted on the walls of the room (marker with
green circles), and ground robots used as targets
to be tracked in the experiments.

Fig. 6. Pictures of the testbed set-up for the multi-drone target
tracking experiments. The Crazyflies are marked with red circles,
and the lighthouse base stations, in green.

The images gathered by each of the drones were
transmitted to the Central Computer, where a ROS-
based user-defined Perception module executed the
multi-drone target tracking EIF-based technique.
The pose of each drone was estimated by the
lighthouse system. The drone pose estimates are
sent through the CrazyRadio at a rate of 50Hz
and the camera images are sent through the video
transmitter at a rate of 25Hz.

The Perception module in the Central Computer
implements one ROS node for each drone. Each
of them performs the operation of the EIF-based
target tracking corresponding to each of the drones
in a distributed manner. Each ROS nodes first
processes the target tracking segmentation in the
image plane using simple color and shape criteria.
The result is the input to the EIF filter, which
obtains the 3D target tracking as described in
Section V. The EIF filter is executed at 25Hz.

The testbed was mounted in a 4x4m room, as
shown in the Figure 6. The lighthouse system
was used not only to estimate the drone poses,
but also to obtain the positions of the targets that



were used as ground truth in these target tracking
experiments. The SteamVR calibration system was
used to calibrate the system. The lighthouse system
calibration is programmed also in the multirotor
firmware, in order to be able to calculate its own
position. Finally, each drone camera was calibrated
too.

To validate our tracking algorithm and the
testbed we performed a series of experiments
where the motion of the targets is tracked by two
drones. To obtain the target ground truth position,
the target was equipped with a lighthouse deck
similar to those on-board the drones.

Figure 7 shows the 3D target position estimation
of one of the targets obtained by the EIF run-
ning on each drone in one experiment. The target
tracking estimates obtained by Drone1 are in blue,
and those obtained by Drone2, in red. The target
estimations from both drones are very similar and
only the estimations from Drone1 (in red color)
are visible in the figure. The target ground truth
positions along the experiment are in black color.
The obtained tracking errors are reasonable.
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Fig. 7. 3D target position estimations obtained by the EIF running
on each drone. The estimations from Drone1 and Drone2 are in blue
and in red, respectively. The target ground truth position is in black
color.

Figure 8 shows the number of contributions
integrated in the EIF Update stage running in
Drone1 and in Drone2 along the above experiment.
The contributions of both drones are integrated in
almost every time instants. Not all contributions
were integrated for all times due to communication

loss or image segmentation errors. This result
evidences the robustness of the tracking method
tested.
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Fig. 8. Number of contributions integrated in the EIF Update stage
for Drone1 and for Drone2 along the above experiment.

Table VI shows the mean tracking errors along
the set of experiments performed. A high compo-
nent of the target tracking error is originated by
2D tracking errors or losses. The simple image
processing technique used to segment the target
in the images fails occasionally originating target
tracking inaccuracies. Despite these errors, the per-
formance of the tracking system was good enough
for a proof-of-concept test even considering that
the testbed was set-up in less than one hour in
an not-conditioned space, a regular PhD student
office.

Mean Maximum Minimun
Target tracking error [m] 0.047 0.176 0.0013
Target tracking std.
deviation [m] 0.021 0.035 0.012
2D target tracking
losses [times/min] 5.68 15.1 0.73
EIF contribution
losses [times/min] 14.4 36.2 3.5

VII. CONCLUSIONS

The increasing interest in aerial robotics has mo-
tivated the need for tools that enable the quick and
low-cost development of proof-of-concept tests.
Significant effort has been devoted to make avail-
able ready-to-use aerial robotics software frame-
works, libraries and tools. However, the high set-
up and maintenance cost of existing aerial robotics
testbeds is still a constraint for many potential
drone developers.

This paper presents a low-cost multi-drone
testbed for agile, flexible and safe performing
proof-of-concept experiments. It uses low-size,



hardware-efficient and simple Crazyflie drones and
low-cost lighthouse positioning system. The pre-
sented testbed does not require a dedicated space
and its flexible ROS-based architecture can be used
to easily test multi-drone perception and planning
techniques. This paper presented the testbed and
validated its operation with multi-drone experi-
ments that implemented EIF-based target tracking.

The results obtained in the presented experi-
ments evidenced that despite the simplicity of the
testbed, it is valid for proof-of-concept testing. The
total time required for setting-up the experiment
was lower than one week. Almost all the time was
devoted to the drone hardware modifications to
mount the nano-cameras, and the camera calibra-
tion for each drone. The full testbed using tripods
for the lighthouse base stations was set up in a not
conditioned space (a regular PhD student office) in
less than one hour. This result shows the agility of
the presented testbed to perform proof-of-concept
experiments.

The presented experiments tested a version of
the EIF that was implemented in the Central
Computer due to the computational constraints of
the hardware on-board the drones. Future devel-
opments include the change in the hardware on-
board the Crazyflies to enable onboard execution of
the full tracking system. Another constraint of the
presented tracking system is the simplicity of the
target segmentation in the images gathered by the
drones. Adding more computational capabilities
on-board the drones will enable more complex
and accurate target 2D segmentation, which would
significantly improve 3D tracking performance.
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