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Abstract: This paper presents an actuator fault detection and diagnosis system for 
autonomous helicopters. The system has been tested with the MARVIN autonomous 
helicopter. Fault detection is accomplished by evaluating any significant change in the 
behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by 
using an observer. The effectiveness of the proposed approach is demonstrated by means 
of MARVIN experimental results and simulations.  Copyright © 2004 IFAC 
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1. INTRODUCTION 

 
Unmanned Aerial Vehicles are increasingly used in 
many applications in which ground vehicles cannot 
access to the desired locations due to the 
characteristics of the terrain and the presence of 
obstacles. In many cases the use of aerial vehicles is 
the best way to approach the objective to get 
information or to deploy instrumentation.  
 
The work described in this paper has been performed 
in the framework of the COMETS project funded by 
the IST Programme of the European Union, devoted 
to the coordination and control of multiple unmanned 
aerial vehicles. Particularly, both helicopters and 
airship have been integrated in the COMETS system. 
 
Helicopters have high manoeuvrability and hovering 
ability. Then, they are well suited to agile target 
tracking tasks, as well as to inspection and 
monitoring tasks that require to maintain a position 
and to obtain detailed views. Furthermore, the 
vertical take-off and landing of helicopters is very 
desirable in many applications. Remotely piloted 
helicopters are inherently unstable and dynamically 
fast. Even with improved stability augmentation 
devices, a skilled, experienced pilot is required to 
control them during flight. Autonomous helicopter 
control is a challenging task involving a 
multivariable nonlinear open-loop unstable system 
with actuator saturations. 
 
Moreover, helicopters do not have the graceful 
degradation properties of fixed wing aircrafts or 
airships in case of failures. Thus, a failure in any part 
of the autonomous helicopter (actuators, sensors, 
control system, etc) can be catastrophic. If the failure 
is not detected and accounted for, the helicopter may 
crash. 

Fault Detection and Isolation (FDI) techniques have 
been widely used in process industry to detect faults 
in actuators and sensors. If a fault is detected, the 
structure of the controller can be changed to get the 
best possible response of the system, or the system 
can be stopped. FDI techniques have been applied to 
autonomous vehicles as cars, aircrafts (Napolitano et 
al., 1999; 2000), fixed-wing (Napolitano et al., 1998) 
and tilt-rotor UAVs (Rago et al., 1998), and 
underwater vehicles (Alessandri et al., 1998). 
However, the authors have not found any published 
application to autonomous helicopters. 
 
In this paper, a fault detection system for 
autonomous helicopter actuators is presented.  The 
system is applied to the Marvin autonomous 
helicopter. This helicopter is described in section 2. 
Section 3 introduces the fault detection and isolation 
approach. The results on the application of these 
techniques to Marvin are presented in section 4. 
Sections 5 and 6 are devoted to the conclusions and 
references. 
 

2. THE MARVIN HELICOPTER 
 

The basis of MARVIN is a conventional model 
helicopter. It has a rotor diameter of 1.9 m and is 
equipped with a two-stroke petrol engine producing 
about 2 kW. Its takeoff weight amounts to about 12 
kg, operation time is approximately 30 minutes. 
Figure 1 shows a view of MARVIN in flight. The 
sensors on board of MARVIN are:  
1. A custom-built inertial measurement unit 

consisting of three magnetometers, three semi-
conductor accelerometers, and three piezo-
electric gyroscopes. 

2. A fire sensor that detects a certain range of 
ultraviolet light characteristic of burning wood, 

Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 2004), Lisbon, Portugal, July 2004

1



     

gas, or oil. 
3. Temperature sensor to measure the heat of 

surrounding air. 
4. A light barrier rpm sensor for measuring the 

main rotor rpm. 
5. An ultrasonic rangefinder looking down. 
6. A high resolution digital still camera. 
7. A NovAtel RT-2 carrier phase differential GPS 

receiver. 
 
On-board data processing is divided between a PC-
architecture single-board computer (by Compulab) 
and an Infineon SAB80C167 microcontroller. The 
PC is responsible for wireless network communi-
cation and for the interfacing of the on-board camera, 
while the microcontroller is used for sensor and 
actuator data processing and the implementation of 
the flight controller. 
 

 
Fig. 1. MARVIN in flight. 
 
MARVIN’s actuators are six servos that operate the 
engine throttle, the tail rotor pitch, and the main rotor 
pitch settings. The swashplate is moved by four 
servos, which control its position and orientation at 
one of four corners with 90° offset. This means that 
three parameters (collective pitch pc, cyclic pitch py 
for pitching, and cyclic pitch px for rolling) are 
redundantly affected by four servo outputs, the front 
servo sf, the rear servo sb, the left servo sl, and the 
right servo sr . The involved relations are: 
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The servo signals have to be calculated by the 
controller according to the above relations. 
Consequently, if one of the servos fails but can be 
moved by the remaining three, MARVIN can still 
operate safely without any special measures. Thus, 
early fault detection and identification is relevant to 
increase helicopter safety. 
 
 

3. FAULT DETECTION AND ISOLATION 
 

Safety and reliability are important requirements in 
man-made dynamical systems. These requirements 
apply specially to safety-critical systems, as is the 
case of helicopters. The early detection of faults can 
help to avoid system shut-down, breakdown and 
even catastrophes involving human and material 
damage. 
 
The monitoring of faults in feedback control system 

components is known as fault detection and isolation 
(FDI). The procedure of generating a control action 
which has a low dependency on the presence of 
certain faults is known as fault tolerant control. 
 

   
Fig. 2. Scheme of fault tolerant control system with 

supervision subsystem. 
 
Fig. 2 shows the general schematic arrangement 
appropriate to many fault tolerant control systems 
(Patton, 1997) with four main components: the plant 
itself (including sensors and actuators), the FDI unit, 
the feedback controller and the supervision system. 
The plant is considered to have potential faults in 
sensors, actuators or other components. The FDI unit 
provides the supervision system with information 
about the onset, location and severity of any fault. 
Based on system inputs and outputs together with 
fault decision information from the FDI unit, the 
supervision system will reconfigure the sensor set 
and/or actuators to isolate the faults, and tune or 
adapt the controller to accommodate the fault effects. 
 
An example of control reconfiguration in autono-
mous helicopters is RPM control reconfiguration (see 
Kannan et al., 1999 and Yavrucuk and Prasad, 1999).  
 
In helicopters, the primary method used to control 
altitude is to change the main rotor collective pitch 
angle which controls the magnitude of the thrust 
vector. Normally, the RPM of the main rotor is kept 
constant using a governor. In case the main rotor 
collective actuator fails or gets stuck, the amount of 
thrust may still be controlled by varying the speed 
(RPM) of the rotor. There is a performance 
degradation, but altitude can still be controlled using 
RPM control. 
 
A scenario where such control may be used in 
practice is during descent where the helicopter needs 
to increase thrust as it nears the ground. If the main 
rotor collective actuator fails during this phase of 
flight, the helicopter will be unable to reduce its 
descent rate as it gets closer to the ground. 
 
The FDI unit is a basic element of the fault tolerant 
control scheme presented in Fig. 2. The work 
presented in this paper concentrates on FDI. 
 
Fault-detection approaches can be classified as 
model-free and model-based paradigms (Gertler, 
1988; Frank, 1990). Model-free fault diagnosis 
includes all the techniques that do not rely upon 
models of the underlying system, while model-based 
methods try to diagnose faults using the redundancy 
of some mathematical description of the dynamics. 
 
Examples of model-free techniques are the methods 

Ref. 
input

 

Plant 
(Helic.) 

 
Supervision

Fault 

 

Controller  

Actuators 
 

Sensors 

FDI 

Fault Fault 

Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 2004), Lisbon, Portugal, July 2004

2



     

based on spectral analysis, pattern recognition and 
statistical classification, and the classical limit and 
trend check (Pau, 1981). 
 
From the beginning of the seventies, there have been 
numerous theoretical advancements in fault 
diagnostics based on analytical redundancy. 
According to this approach, all the information on 
the system can be used to monitor the behaviour of 
the plant, including the knowledge about the 
dynamics. The presence of faults is detected by 
means of the so-called residuals, i.e., quantities that 
are over-sensitive to the malfunctions. Residual 
generation can be performed in different ways: parity 
equations (Gertler, 1997), observer-based generation 
(Patton and Chen, 1997), and the methods based on 
parameter estimation (Isermann, 1984). Neural 
networks and fuzzy systems have also been applied 
in model-based FDI (Patton et al., 2000). 
 
Observer-based and parameter estimation methods 
are the most frequently applied methods for fault 
detection (Isermann and Ballé, 1997). Most 
published work in recent years on FDI systems for 
autonomous vehicles also use observer-based 
methods. The basic idea behind the observer or filter-
based approach is to estimate the outputs of the 
system from the measurements by using either 
Luenberger observer(s) in a deterministic setting or 
Kalman filter(s) in a stochastic setting. 
 
Several methods have been used for observer 
generation in autonomous vehicles FDI: Luenberger 
observers, Kalman filters, banks of observers and 
Kalman filters and neural networks.  
 
Neural networks have been used to detect sensor and 
actuator faults applied to a B-747 mathematical 
model (Napolitano et al., 2000). A bank of Kalman 
filters and neural networks have also been used for 
sensor fault detection on a NASA high altitude UAV 
simulation model (Napolitano et al., 1998), and on 
B-373 actual flight data (Napolitano et al., 1999). A 
bank of Kalman filters have been used for fault 
detection in aircrafts, with application to a linear 
simulation model of an Eagle-Eye tilt-rotor UAV 
(Rago et al., 1998). Actuator fault detection in 
unmanned underwater vehicles has been done using 
a bank of Kalman filter estimators (Alessandri et al., 
1998).  
 
In this paper, the diagnosis of actuator faults in an 
autonomous helicopter is investigated and the design 
of a fault detection system is considered, using a 
model-based approach, with observer-based residual 
generation, using Luenberger observers. 
 
3.1 Fault identification scheme. 
The scheme used for fault identification is presented 
in Fig. 3. u and y are the inputs and outputs vectors 
of the autonomous helicopter, respectively. The 
observer block is an input-output model of the 
helicopter in nominal fault-free conditions, obtained 
by system identification. The output of the observer 
is an estimation of the output of the helicopter, yest. 

The residuals R are generated comparing the 
estimated outputs of the helicopter with the actual 
outputs. If a fault is present in the system, the fault 
diagnosis system will analyse the generated residuals 
to detect and isolate the fault. 
 

 
 
Fig. 3. Fault Identification Scheme. 
 
3.2 FDI in the MARVIN case 
As the MARVIN helicopter does not have a separate 
collective pitch actuator, the situation is a little more 
complicated in practice here. As stated in section 2, if 
one of MARVIN's main rotor servos gets stuck, both 
collective and cyclic pitch angles are affected.  
 
Servo failures are frequently located on the internal 
reduction gears, which cause that the servo can no 
longer move in one or both directions. In both cases, 
the failure can be considered as a stuck servo. Other 
servo failures can be due to electrical problems, and 
the servo may be unusable, but not stuck, thus letting 
the other servos to work. The failure can also be 
located on the mechanical links. So, several different 
failure types are possible:  
- One servo involved in rolling (or pitching) 

motion has a failure, but does not get stuck. In 
this case, the collective may also work powered 
by the other three servos, but the cyclic may not 
work with only one servo, or be seriously 
affected.. This situation can be detected as a 
rolling (or pitching) cyclic actuator fault. Then, 
the signals to apply the corresponding rolling (or 
pitching) cyclic command has to be doubled so 
that the one remaining working servo can move 
the swashplate to the intended orientation. 

- If the servo involved in rolling (or pitching) 
motion actually gets stuck, both the collective 
and the rolling (or pitching) actuators will not 
work. This situation can be detected as a 
collective actuator fault and a rolling (or 
pitching) cyclic actuator fault.  Provided that the 
failing servo is not in a state close to a border of 
its working range (in which case cyclic pitch 
control would invariably fail), rpm control can 
be used to govern the lifting force. 

- Another less common possibility is that the 
collective actuator can no longer work, or it may 
work with a limited range (actually preventing 
the helicopter from descending, for example), 
due to a failure in the mechanical links. In this 
case, a collective actuator fault will be detected. 
Rpm control can also be used to govern the 
lifting force. 

 
In the last two cases, if rpm control is applied the 
cyclic pitch controllers have to consider the rpm 
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changes and the error integrator of the controller in 
question will eventually shift its operating point such 
that stable and reliable control of the helicopter is 
regained. 
 
3.3 Observer design. 
For FDI purposes, only the output estimation is 
required (Patton and Chen, 1997). The estimation of 
the state vector is unnecessary. A residual generator 
based on a Luenberger observer can be used.  
 
As only the outputs are required for FDI, an input-
output model of the helicopter system can be 
identified for output prediction. Since past inputs and 
outputs are available to the FDI system at any given 
instant, the input-output model can be used to 
estimate the actual output in fault-free conditions. A 
linear mathematical model of the input-output links 
can be used for local analysis. This model can be 
obtained by means of well known identification 
schemes. When the signal to noise ratios are high 
Auto Regressive eXogenous (ARX) models can be 
used. The ARX model is chosen with the structure 
that achieve the smallest Akaike's Information 
Theoretic Criterion (AIC) (Ljung, 1999), according 
to a simple search algorithm, in which the first half 
of data is used for estimation and the second for 
cross validation. 
 
 

a)                                                 b) 
 
 
 
 
 
 
Fig. 4. a) 3211 input signal definition. b) 3211 real 

collective input signal in a sample experiment. 
 
Input-output data for helicopter output model. 
Several experiments have been done to collect 
MARVIN input-output data for ARX input-output 
model identification. Input data are the 4 pilot inputs 
(collective, rolling and pitching cyclics and tail rotor 
collective). Outputs are helicopter linear and angular 
velocities, position and inclination angles. 
 
The identification is made on the time domain, and 
therefore 3211-signals have been used for input 
excitation. 3211 signals can be seen in Fig. 4. The 
amplitude A and the period T have to be chosen for 
each experiment, depending on actuator range and 
the dynamics range that needs to be excited. 
 
In aircraft and helicopter system identification, 3211 
signals are preferred to others like steps or doublets, 
because they excite a broader dynamic spectrum of 
the system, and also 3211 signals are easy for pilots 
to execute.  
 
3.3 Residual generation. 
Independent residuals are constructed for each 
different actuator failure. Residuals are designed so 
that they respond to an individual failure and not to 

the others. In general, residuals Rk are functions of 
the squared difference between estimated and real 
helicopter linear (vi) and angular (ωj) velocities: 
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where mi and nj are weighting coefficients that are 
determined for each failure based on experience. 
 
3.4 Residual evaluation.  
Fault diagnosis involves the analysis of the residuals. 
Several fault diagnosis methods have been reported 
in the literature (Isermann, 1997). Most of them are 
in two categories: classification methods (statistical 
or geometrical), and reasoning methods, that can be 
used in technical processes where the basic 
relationships between faults and symptoms 
(residuals) are at least partially known. This a-priori 
knowledge can be of help in constructing the 
residuals, and can be represented in causal relations 
symptoms -> faults. To perform a diagnosis, this 
qualitative knowledge can be expressed in form of 
simple rules: 

IF  <condition>  THEN  <conclusion> 
In autonomous helicopter FDI, this leads to rules as: 

IF  < Stail >  THEN  < Ftail > 
Where  Stail is true if the tail rotor failure residual 
goes above the threshold level, and false otherwise. 
Ftail denotes that a failure has been detected in the tail 
rotor actuator. This way, the fault diagnosis system 
can be used to detect also individual servo failures as 
mentioned in section 3.2. If a servo involved in 
rolling motion gets stuck, it will affect 
simultaneously to two different actuators, collective 
and rolling cyclic. Then, the corresponding rule is: 

IF  < Scoll AND Sroll >  THEN  < Frollservo > 
where  Scoll and Sroll are signals that are true if the 
collective and rolling cyclic failure residuals go 
above their respective threshold levels, and false 
otherwise. Frollservo denotes that a failure has been 
detected in one of the servos actually involved in the 
rolling motion. 
 
The first time the residual goes above the threshold 
level, the fault is supposed to be present, even if the 
residual goes below it later. 
 
 

4. FAULT DETECTION RESULTS 
 

The actuator fault detection system has been tested 
using helicopter data from two different sources: 
1. A full nonlinear mathematical model, with rigid 

body dynamics, actuator dynamics, and force and 
moment generation dynamics, including the 
flybar. This model is similar to the one presented 
by Kim and Tilbury, (1998). The model 
parameters have been identified with MARVIN. 

2. Real flight data obtained from MARVIN. 
 
The use of the nonlinear model makes easier to test 
the actuator fault detection system, because datasets 
can be easily generated by computer simulation as 
needed. On the other hand, real flight experiments 
are the best way of testing the fault detection system, 
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although it is more expensive and time consuming, 
and they are not available at any time. 
 
4.1 Fault detection using simulated helicopter data. 
Using flight data obtained by simulation of the full 
nonlinear model, the actuator fault detection system 
has been used to detect faults in all four helicopter 
actuators: main rotor collective, tail rotor collective 
and both rolling and pitching cyclic inputs. 
 

 
Fig. 5. Collective fault detection (nonlinear model). 
 
In Fig. 5 the results of a collective actuator fault 
detection is shown. The three plots show the 
helicopter vertical linear velocity Vz, the Vz estima-
ted by the observer and the evolution of the residual 
( 2)ˆ( zz vvR −= ), respectively. At t= 5 s., the 
collective actuator gets stuck near the trim hovering 
value. It can be seen that as a result of the collective 
failure, the helicopter Vz remains almost constant 
while the Vz estimated by the observer varies. This is 
captured by the residual evolution, which is below 
the threshold level for fault-free operation but 
exceeds the threshold value (dashed line) after the 
actuator gets stuck, and therefore the collective fault 
can be detected. 
 

 
Fig. 6. Rolling cyclic fault detection (nonlinear 

model). 
 
Fault detection of the rolling cyclic actuator is 
presented in Fig. 6. The three plots show the real 
helicopter linear velocity Vx, the Vx estimated by 
the observer and the evolution of the rolling cyclic 
residual ( 2)ˆ( xx vvR −= ), respectively. At t= 5 s., 

the rolling cyclic actuator gets stuck near the trim 
hovering value. In this case, the detection time is 
larger, but this is due to that the cyclic input is not 
excited. In fact, it is impossible to detect an actuator 
failure if the actuator is not excited. In this 
experiment, the rolling cyclic actuator is not 
immediately excited, but after a few tenths of a 
second. Once the cyclic input is excited, the residual 
goes above the threshold value, and the fault can be 
detected.  
 
4.2 Fault detection using real MARVIN flight 

helicopter data. 
A failure in an actuator can be potentially dangerous 
for the helicopter, because it can take the helicopter 
out of control and it may crash. Even for experienced 
pilots, it could be dangerous to make flight 
experiments with a faulty actuator. 
 
In order to test the FDI system of the autonomous 
helicopter in real flight conditions, some experiments 
were planned to simulate a faulty condition in an 
actuator while maintaining security of people and the 
helicopter. 
 

 
 
 Fig. 7. MARVIN fault detection experiments. 
 
In these experiments, the pilot was commanded to 
make a flight with different movements, but at a 
given time, he should maintain one of the actuators 
almost fixed in a given position, and thus simulating 
a stuck actuator. These experiments were repeated in 
different flight conditions (near hover, forward flight 
at different velocities, etc). Fig. 7 shows a 
photograph of the experiments. The video sequences 
can be seen in the COMETS web site 
(http://www.comets-uavs.org). 
 
After the experiments, the input data was modified. 
The input signal corresponding to the “stuck” 
actuator was changed, and a different input command 
was introduced for that actuator. The effect of this 
modification is that a varying input signal is 
commanded to the helicopter, but, because of the 
stuck actuator, the actuator remains in a fixed 
position, and all the sensor data correspond to this 
stuck situation. This is an effective and safe way of 
reproducing faulty conditions in helicopter actuators. 
 
In Fig. 8 an example actuator fault experiment is 
presented. A stuck type fault has been reproduced in 
the main rotor collective of the MARVIN helicopter, 
using real flight experiment data. At t = 18 s. (dashed 
line) the collective actuator gets stuck. Then the 
collective input commanded by the controller cannot 
be followed by the actuator, which remains stuck 
(effective input line in Fig. 8).  
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Fig. 8. MARVIN main rotor collective failure. 
 
The collective residual generated by the FDI system 
can be seen in Fig. 9. It can be seen that the residual 
is below the threshold level (horizontal dashed line) 
for normal fault-free operation. But, when the 
actuator gets stuck (vertical dashed line), the residual 
goes above the threshold level, and therefore, a 
collective actuator fault has been detected.  
 

 
Fig. 9. Time evolution of the collective residual. 
 

 
 

CONCLUSIONS 
 

The application of autonomous helicopters in civilian 
application requires the improvement of safety 
conditions to avoid potential accidents. Fault 
detection and Isolation plays an important role in this 
context. This paper has presented a system for 
helicopter’s actuator fault detection and its 
application to the MARVIN autonomous helicopter. 
The system has been designed by using a full 
nonlinear model of the helicopter identified by using 
experimental data. Experiments with MARVIN have 
been conducted to collect input-output data in many 
different conditions. Furthermore, the paper presents 
a validation experiment by reproducing the main 
rotor actuator failure.  
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