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 Abstract - This paper presents real time computer vision 
techniques for autonomous navigation and operation of 
unmanned aerial vehicles. The proposed techniques are based on 
image feature matching and projective methods. Particularly, the 
paper presents the application to helicopter motion compensation 
and object detection. These techniques have been implemented in 
the framework of the COMETS multi-UAV systems. 
Furthermore, the paper presents the application of the proposed 
techniques in a forest fire scenario in which the COMETS system 
will be demonstrated. 
 
 Index Terms - UAV; cooperative detection and monitoring; 
feature matching; image stabilization; homography. 
 

I.  INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have increased 
significantly their flight performance and autonomous on-
board processing capabilities in the last 10 years. These 
vehicles can be used in Field Robotics Applications where the 
ground vehicles have inherent limitations to access to the 
desired locations due to the characteristics of the terrain and 
the presence of obstacles that cannot be avoided. In these 
cases aerial vehicles may be the only way to approach the 
objective and to perform tasks such as data and image 
acquisition, localization of targets, tracking, map building, or 
even the deployment of instrumentation.  

Particularly, unmanned helicopters are valuable for many 
applications due to their maneuverability. Furthermore, the 
hovering capability of the helicopter is very appreciated for 
event observation and inspection tasks. Many different 
helicopters with different degree of autonomy and 
functionalities have been presented in the last ten years (see 
for example [1], [2], [3], [4], [5]).  

Most UAV autonomous navigation techniques are based 
on GPS and the fusion of GPS with INS information. 
However, computer vision is also useful to perceive the 
environment and to overcome GPS failures and accuracy 
degradation. Thus,  the concept of visual odometer [1] was 
implemented in the CMU autonomous helicopter and this 
helicopter also demonstrated autonomous visual tracking 
capabilities of moving objects. Computer vision is also used 
for safe landing in [6]. In [7] a system for helicopter landing 

on a slow moving target is presented. Vision based pose-
estimation of unmanned helicopters relative to a landing target 
and vision-based landing of an aerial vehicle on a moving 
deck are also researched in [8] and [5]. Aerial image 
processing for an autonomous helicopter is also part of the 
WITAS project [9]. Reference [7] presents a technique for 
helicopter position estimation using a single CMOS camera 
pointing downwards, with a large field of view and a laser 
pointer to project a signature onto the surface below in such a 
way that it can be easily distinguished from other features on 
the ground. The perception system presented in [10] applies 
stereo vision, interest point matching and Kalman filtering 
techniques for motion and position estimation.  

Motion estimation, object identification and geolocation 
by means of computer vision is also done in [11] and [12] in 
the framework of the COMETS project. In this paper new 
results of this project are also presented.  

UAVs are increasingly used in many applications 
including surveillance and environment monitoring. 
Environmental disaster detection and monitoring is another 
promising application. Particularly,  forest fire detection and 
monitoring are potential applications that attracted the 
attention of researchers and practitioners. In [13] the First 
Response Experiment (FiRE) demonstration of the ALTUS 
UAV (19,817 m altitude and 24 flight) for forest fire fighting 
is presented. The system is able to deliver geo-rectified image 
file within 15 minutes of acquisition. In [11] and [12] the 
application of computer vision techniques and UAVs for fire 
monitoring using aerial images is proposed. The proposed 
system provides in real time the coordinates of the fire front 
by means of geo-location techniques. Instead of expensive 
high performance UAVs, the approach is to use multiple low 
cost aerial system. This paper also presents experiments in a 
forest fire scenario using this approach in the framework of 
the COMETS multi-UAV project funded by the European 
Commission under the IST program. 

In the next section the COMETS system is introduced. 
Then, a feature matching method based on previous work of 
some of the authors is summarized. This method is applied in 
the next two sections to motion compensation, required for 
object detection. Then, experimental results are described. 
Finally, the conclusions and references are presented. 



 
II.  THE COMETS SYSTEM 

This research work has been developed in the framework 
of the COMETS project. The main objective of COMETS is 
to design and implement a distributed control system for 
cooperative detection and monitoring using heterogeneous 
Unmanned Aerial Vehicles (UAVs). Distributed sensing 
techniques which involve real-time processing of aerial 
images play an important role. Although the architecture is 
expected to be useful in a wide spectrum of environments, 
COMETS will be demonstrated in a  fire fighting scenario. 

 

  
 

Fig. 1 Architecture of the COMETS system 
 

COMETS  (see Fig. 1) includes heterogeneous systems 
both in terms of vehicles (helicopters [3] and airships [10] 
have being currently integrated) and on board processing 
capabilities ranging from fully autonomous aerial systems to 
conventional radio controlled systems. The perception 
functionalities of the COMETS system can be implemented 
on-board the vehicles or on ground stations, where low cost 
and light aerial vehicles without enough on-board processing 
capabilities are used. A system like this poses significant 
difficulties on image processing activities. Being a distributed, 
wireless system with non-stationary nodes, bandwidth is a 
non-negligible limit. In addition, small aerial vehicles impose 
severe limits on the weight, power consumption and size of 
the on board computers, making necessary to run most of the 
processing off-board. The same constraints and its high cost 
rule out high-performance gimbals which are able to cancel 
vibration of on-board cameras. Thus, image processing should 
be able to extract useful information on low frame rate (one to 
two frames per second), compressed video streams where 
camera motion is largely uncompensated. A precondition for 
many detection and monitoring algorithms is electronic image 
stabilization, which in turn depends on a sufficiently reliable 
and robust image matching method, able to handle the high 
and irregular apparent motion that is frequently found in aerial 
uncompensated video, even when the platform is a hovering 
helicopter. This function will be considered in section III. 

The perception system in COMETS consist of the 
Application Independent Image Processing (AIIP) subsystem, 
the Detection Alarm Confirmation and Localization (DACLE) 
subsystem, and the Event Monitoring System (EMS). This 
paper describes several functions of the AIIP subsystem. 
These functions are used by DACLE and EMS. Particularly, 

image stabilization and object detection are described in the 
following and implemented in the helicopter shown in Fig. 3 
developed jointly by the University of Seville and the 
Helivision company. Object detection can be useful in a multi-
UAV system for security reasons; emergency collision 
avoidance would need to detect nearby crafts. On the other 
hand, surveillance activities would also need some way to 
detect and track mobile objects on the ground, such as cars. 

    

            
 

Fig. 2 University of Seville-Helivision helicopter flying in experiments of the 
COMETS project (May 2003). 

 
III.  FEATURE MATCHING METHOD 

 
A. Relations to previous work 

The computation of the approximate ground plane 
homography needs a number of good matching points 
between pairs of images in order to work robustly. The image 
matching method used in this work is related to the described 
in [14], although significant improvements have since been 
made. 

In [14] corner points were selected using the criteria 
described in [15]; each point was the center of a fixed-size 
window which is used as template in order to build matching 
window sequences over the stream of video images. Window 
selection provides for initial startup of window sequences as 
well as candidates (called direct candidates) for correlation-
based matching tries with the last known template window of 
a sequence. The selection of local maxima of the corner 
detector function assured stable features, so window 
candidates in any given image were usually near the right 
matching position for some window sequence. 

The correlation-based matching process with direct 
candidates within a search zone allowed to generate a 
matching pair data base, which described possibly multiple 
and incompatible associations between tracked sequences and 
candidates. A disambiguation process selected the right 
window to window matching pairs by using two different 
constraints: least residual correlation error and similarity 
between clusters of features. 

The similarity of shape between regions of different 
images is verified by searching for clusters of windows whose 
members keep the same relative position, after a scale factor is 
applied. For a cluster of window sequences, 
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In (1)  pk is a tolerance factor, iw  are candidate windows 

in the next image and iv  are template windows from the 
preceding image. The constraint is equivalent to verify that the 
euclidean distances between windows in both images are 
related by a similar scale factor; thus, the ideal cluster would 
be obtained when euclidean transformation and scaling can 
account for the changes in window distribution.  

Cluster size is used as a measure of local shape similarity; 
a minimum size is required to define a valid cluster. If a 
matching pair cannot be included in at least one valid cluster, 
it will be rejected, regardless of its residual error. 

 
B. New strategy for feature matching 

The new approach uses the same feature selection 
procedure, but its matching strategy is significantly different.  

First, the approach ceases to focus in individual features. 
Now clusters are not only built for validation purposes; they 
are persistent structures which are expected to remain stable 
for a number of frames, and are searched for as a whole. 

Second, the disambiguation algorithm changes from a 
relaxation procedure to a more efficient predictive approach, 
similar to the one used in [16] for contour matching. Rather 
than generating an exhaustive data base of potential matching 
pairs as in [15], only selected hypothesis are considered. Each 
hypothesis, with the help of the persistent cluster data base, 
allows to define reduced search zones for sequences known to 
belong to the same cluster as the hypothesis, if a model for 
motion and deformation of clusters is known. Currently the 
same approach expressed in (1) is kept, refined with an 
additional constraint over the maximum difference of rotation 
angle between pair of windows: 
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Where rsα  is the rotation angle of the vector that links 
windows from sequences r and s, if the matching hypothesis is 
accepted, and pγ is a tolerance factor. Although the cluster 

model is adequately simple and seems to fit the current 
applications, more realistic local models such as affine or full 
homography could be integrated in the scheme without much 
difficulty. 

It is easy to verify that two hypothesized matching pairs 
allow to predict the position of the other members of the 
cluster, if their motion can be modelled approximately by 
euclidean motion plus scaling. Using this model, the 
generation of candidate clusters for a previously known 
cluster can start from a primary hypothesis, namely the 

matching window for one of its window sequences (see Fig. 
(3)). This assumption allows to restrict the search zone for 
other sequences of the cluster, which are used to generate at 
least one secondary hypothesis. Given both hypothesis, the 
full structure of the cluster can be predicted with the small 
uncertainty imposed by the tolerance parameters  pk and  pα , 
and one or several candidate clusters can be added to a data 
base. The creation of any given candidate cluster can trigger 
the creation of others for neighbour clusters, provided that 
there is some overlap among them; in Fig. (1), for example, 
the creation of a candidate for cluster 1 can be used 
immediately to propagate hypothesis and find a candidate for 
cluster 2. Direct search of matching windows is thus kept to a 
minimum. 

At the final stage of the method, the best cluster candidates 
are used to generate clusters in the last image, and determine 
the matching windows for each sequence. 

The practical result of the approach is to drastically reduce 
the number of matching tries, which are by far the main 
component of processing time when a  great number of 
features have to be tracked, and large search zones are needed 
to account for high speed image plane motion. This is the case 
in non-stabilized aerial images, specially if only relatively low 
frame rate video streams are available. 

 

 
Fig. 3 Generation of cluster candidates 

 
C. Other features 

In addition to the cluster based, hypothesis driven 
approach, other improvements have been introduced in the 
matching method.  

• Temporary loss of sequences is tolerated through the 
prediction of the current window position computed 
with the known position of windows that belong to the 
same cluster; this feature allows to deal with sporadic 
occlusion or image noise. 

• Normalized correlation is used instead of the sum of 
squared differences (SSD) used in [14], in order to 
achieve greater immunity to change in lighting 
conditions. The higher computational cost has been 
reduced with more efficient algorithms that involve 
applying the method described in [15] between a 
previously normalized template and candidate 
windows. 



IV. MOTION COMPENSATION AND OBJECT DETECTION 

Motion compensation can be achieved for specific 
configurations through the computation of homography 
between pairs of images. 
 
A. Homography computation 

If a set of points in the scene lies in a plane, and they are 
imaged from two viewpoints, then the corresponding points in 
images i and j are related by a plane-to-plane projectivity or 
planar homography [17], H: 
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where [ ]1,,~
kkk vum =  is the vector of homogenous image 

coordinates for a point in image k, H is a 3x3 non-singular 
matrix and s is a scale factor. The same equation holds if the 
image to image camera motion is a pure rotation. Even though 
the hypothesis of planar surface or pure rotation may seem too 
restrictive, they have proved to be frequently valid for aerial 
images. An approximate planar surface model usually holds if 
the UAV flies at a sufficiently high altitude, while an 
approximate pure rotation model holds for a hovering 
helicopter. Thus, the computation of H will allow under such 
circumstances to compensate for camera motion. 

Since H has only eight degrees of freedom, we only need 
four correspondences to determine H linearly. In practice, 
more than four correspondences are available, and the 
overdetermination is used to improve accuracy. For a robust 
recovery of H, it is necessary to reject outlier data. In the 
proposed application, outliers will not always be wrong 
matching pairs; image zones where the homography model 
will not hold (moving objects, buildings or structures which 
break the planar hypothesis) will also be regarded as outliers, 
although they may offer potentially useful information. The 
overall design of the outlier rejection procedure used in this 
work, is based on LMedS (Least Median Square Stimator) and 
further refined by the Fair M-estimator [18], [19], [20], [21]. 
 
B. Optimized motion compensation algorithm 

Once the homography matrix H has been computed, it is 
possible to compute from (3) the position in image j, 

[ ]1,,~
jjj vum = , where the point  in image i, [ ]1,,~

iii vum = , has 

moved. As jj vu ,  are in general non-integer coordinates, some 
interpolation algorithm such as bilinear or nearest-neighbour 
will have to be used to obtain the motion compensated image 
j. 

As the COMETS system needs to operate in real-time, it 
was necessary to optimize the motion compensation process, 
which was intended to support other higher level processing. 
As the computation of  jj vu ,  was found to spend a significant 
portion of the processing time devoted to motion 
compensation, an approximate optimized method has been 
designed. 

If the straightforward computation is used, each 
coordinate pair needs at least 14 floating point arithmetic 

operations, two of them divisions, which are usually 
significantly slower than multiplications or additions: 
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Under an affine transformation, 33 ),( Hvus ii = ; if H is 
normalized to set 133 =H , the number of operations per pixel 
would be reduced to 8: Four additions, four multiplications 
and no divisions. For a general homography matrix, a linear 
approximation can be used: 
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Where the coefficients a, b, c, d are computed for each 
row of the image; better results are obtained if the nonlinear 
transformation is stepwise linearized by computing  a, b, c, d 
in a number of  intervals which depends on the nonlinearity of 
the specific transformation. As (4) shows,  nonlinearity is 
linked to the function ),( ii vus , and will decrease with the 
range of variation of 323133  ),( HvHuHvuss iiiinl +=−= . As 
the preceding expression defines a plane over the pixel 
coordinate space, the maximum absolute value of nls , Mnls , 
will be reached on the corners of the image, and can be easily 
computed. The following heuristic expression is used to 
determine the optimal number of linarization intervals: 
 

)68.5( 5024.0
Mnls sceiln =                           (6) 

 

As a result of this optimization, the computation time for 
motion compensation in images of 384x287 pixels decreases 
from 80 to 30 ms. in a Pentium 3 at 1Ghz. The combined 
execution of JPEG decompressing, feature matching and 
motion compensation allows to deal with displacements of up 
to 100 pixels at a rate of about three frames per second. 
 
C. Object detection 

Object detection is an example of processing that can be 
performed with the motion compensated stream of images. 
Moving objects can be detected by first segmenting regions 
whose motion is independent from the ground reference plane. 
Object detection can be further refined by searching for 
specific features in such regions. 

Independent motion regions are detected by processing 
the outliers detected during the computation of H. Points 
where H cannot describe motion may appear not only because 
of errors in the matching stage; the local violation of the 
planar assumption, or the presence of mobile objects will 
generate outliers as well. In a second stage, a specific object 
can be identified among the candidate regions generated by 
the independent motion detection procedure. Temporal 
consistency constraints can be used for this purpose, as well as 



known features of the specific object of interest. In the current 
approach, color signature is used to identify nearby aircrafts, 
as shown in section V. 

 

V.  EXPERIMENTAL RESULTS 

Figure 4 shows the results of tracking on a pair of images; 
pictures on top show the tracked windows, while pictures on 
the bottom show a magnified detail with a cluster. For clarity, 
only succesfully tracked or newly selected windows are 
displayed; window 103, circled in white in the lower left 
picture, is temporarily lost because it moves behind the black 
overlay, but would be predicted from the known position of 
the other members. 

 

   
 

Fig. 4 Feature matching method. 
 

In Fig. 5, the image matching and motion compensation 
algorithms are run over a non-compensated stream of images. 
The upper pictures are original images; below are their 
compensated versions, which show the changing features (fire 
and smoke) over a static background. In this case only the 
common field of view is represented, while the rest is clipped; 
the black zone on the right of the second image is beyond its 
limits. Long compensated sequences can be visualized in the 
official web page of the COMETS project, 
http://www.comets-uavs.org. 

 
In Fig. 6 the outliers shown in the upper right image, are 

detected among the tracked windows in the upper left picture 
when homography is computed. The outlier points are 
clustered to identify areas that could belong to the same 
object, or discarded, if they are too sparse. This is shown in 
the lower image of Fig. 5, where three clusters are created, 
marked with a white square; only one of them is selected, 
because its color signature is the expected for a helicopter, 
different from other mobile objects like fire. In Fig. 7, a 
conventional helicopter is identified and tracked during four 
consecutive frames by using the described approach. 
 

 
 

Fig. 5 Motion compensation results. 
 

       
 

Fig. 6 Independent motion detection through outlier analysis. 
 

        
 

Fig. 7 Tracking of a nearby helicopter. 
 
 

VI.  CONCLUSIONS 

In this paper some significant results of vision-based 
object detection and UAV motion compensation results have 



been presented. They work on non-stabilized image streams 
captured from low-cost unmanned flying platforms, in the 
framework of the real-time distributed COMETS system. 
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