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ABSTRACT 
This paper presents some results from the research on autonomous helicopter control conducted 
in the framework of the COMETS project. The paper presents both linear and non-linear control 
laws. A two-time scale decomposition of the helicopter dynamic has been used to analyse the 
dynamic behaviour of the system. The fast subsystem copes with the rotational dynamics, while 
the slow subsystem represents the translational dynamics. The stability of the fast dynamics is 
demonstrated by means of a Lyapunov function. Furthermore, a feedback linearization technique 
is proposed to stabilize the slow dynamics. Moreover, the drawbacks of the linear control laws 
are pointed out and a new nonlinear control law is proposed. This control law is able to control 
the helicopter when large variations occur in the orientation angles and position of the helicopter. 
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1.  INTRODUCTION 
     The work presented in this paper has been developed in the framework of the COMETS 
project funded by the European Commission in the IST Programme. The main objective of 
COMETS is to design and implement a distributed control system for the coordination of 
multiple heterogeneous Unmanned Aerial Vehicles (UAVs) with different autonomy degree. 
Both helicopters and airships are considered. The project involves the design and implementation 
of control techniques for autonomous helicopters and airships. This paper is devoted to 
autonomous helicopter control. 
 
The methods for autonomous helicopter control can be roughly divided in learning and pilot 
knowledge-based control methods, and model based control methods  [1]. This paper relies in the 
second group but also uses heuristic knowledge in the definition of the control laws. Different 
methods for model-based autonomous helicopter control have been presented in the literature 
including linear robust control based on high order linear models  [2], linear control with fuzzy 
gain-scheduling  [3], and nonlinear model predictive control  [4]. In  [5], linear and nonlinear 
control techniques are compared. It should be noted that in hovering, the nonlinear system can be 
linearized and then multivariable linear control techniques, such as LQR and H∞, can be applied. 
On the other hand, nonlinear control techniques are more general and cover wider ranges of flight 
envelopes but requires accurate knowledge about the system and are sensitive to model 
disparities. In this paper the application of both linear and nonlinear control techniques is also 
discussed. 
 
The second section of the paper presents the model that has been used. Then, in section 3, a linear 
control law is suggested as a first control method. In Section 4 the stability of the system is 
analyzed by using a two-time scale decomposition, and a feedback linearization is proposed to 
stabilize the slow subsystem around the equilibrium point. Section 5 points out the drawbacks of 



 

the linear control strategy and proposes a new nonlinear controller. The last two sections are 
devoted to the Conclusions and References.  
 

2.  HELICOPTER MODEL 
Different models of the autonomous helicopter have been used in the COMETS project. In  [6] 

the results of identification experiments are presented. The model presented in  [7] has been used 
in this paper. The helicopter is considered as a rigid body incorporating a force and moment 
generation process. The connections between subsystems and state and control variables are 
defined in Figure 1. 
 

 
Figure 1. Connections between subsystems and state and control variables in a model helicopter. 
 
In this model, state variables and input signals are the following (see Figure 1): 
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where P is the helicopter position in inertial coordinates, and T][ ψθφ=Θ  are the helicopter 
Euler angles. The forces (fb) and torques (τb) generated by the main rotor are controlled by the 
main rotor thrust ( mT ) and the longitudinal (a) and lateral (b) tilts of the tip path plane of the 
main rotor with respect to the shaft. The tail rotor is considered as a source of pure lateral force 
and anti-torque, which are controlled by the tail rotor thrust ( tT ).Definition for both inertial and 
body coordinate frames are shown in Figure 2.  
 

 
Figure 2. Inertial coordinate system and body coordinate system. 

 
The equations of motion for a rigid body subject to body force fb and a torque τb applied at the 
center of mass and specified with respect to the body coordinate frame is given by the Newton-
Euler equation in body coordinate, which can be written as: 
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where vb is the body velocity vector, ωb is the body angular velocity vector, m specifies the mass, 
I is an identity matrix and I is an inertial matrix. Let R(Θ) be the rotation matrix of the body axes 
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relative to the inertial axes (superscript p). By using the fact that vp = R(Θ)vb and Θ = Ψ(Θ)ωb, 
the motion equations of a rigid body can be rewritten as: 
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3.  LINEAR CONTROL 

 
The above model is a coupled nonlinear multivariable and underactuated system with fewer 

independent control actuators than degrees of freedom to be controlled. However, neglecting 
some coupling terms, a simplified and linearized model can be obtained. The main input-output 
relations of this simplified model are shown in Table 1.  
 

CONTROL INPUT Translation Rotation  CONTROL INPUT Translation Rotation

mT  z -  a x θ  

tT  - ψ   b y φ  
Table 1. Main input-output relations 

 
Taking into account relations in Table 1, the following linear control law has been used: 
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Any linear control technique can be used to calculate appropriated values for ki, i = 1, 2... 6 and 
ki’, i = 1, 2... 4. The first approach used by the authors has been the design of a LQR controller, 
tuned from a linearization of  (4) around a hover position. The designed linear controller is only 
valid to stabilize the helicopter around hovering position, not being allowed large variations of 
the state variables.  
 

4.  STABILITY ANALYSIS AND LINEAR CONTROLLER IMPROVEMENTS 
     The stability analysis is carried out taking into account the decomposition of the system 
dynamics into two time scales. One is related to the rotational dynamics, while the other, which is 
much slower, corresponds to the translational dynamics. This allows the study of a dynamical 
system to be simplified by means of two smaller dimension subsystems which evolve into two 
different time-scales. It can be shown that this decomposition is possible because the mass of the 
helicopters produces low terms of the linear velocities in (4). 
 
4.2 Fast Subsystem. Rotational Dynamics 

This subsystem is given by:  
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where τ = τf + τs (f for fast, s for slow), are control variables defined as follows: 

sXs

f

XK

zzKzKzKzK

≅

∀<+Θ≅ ΘΘ

τ

ωτ ωω ,0)(,)(,)()(
(7)   

It can be shown that  (5) can be also represented by means of  (7). It is intended to guarantee the 
stability in a region point defined by C<),( θφ  around the equilibrium; τs is considered small 
enough from the fast dynamics point of view. The following Lyapunov function has been found:  
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where ∆Θ  is the change with respect to the equilibrium state 0Θ . It can be demonstrated that 
this function is positive if C<),( θφ . Furthermore, it can be demonstrated that the derivative of 
this function is negative: 
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Then, the stability of this subsystem can be guaranteed. 
4.3 Slow Subsystem. Translational Dynamics. 

It is given by: 
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The force equation can be written as:  
→

Θ++∆= gmRFFf Tb )(0 ,  (11)   

where 
→

Θ−= gmRF T)( 00  are the force in the equilibrium. Consider the following feedback 
control law: 
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where Kp (z) are feedback gains. Substituting  (11) and  (12) in  (10):  
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Then, at the equilibrium point Θ = Θ0, ωb = 0, the dynamics behaviour of the slow subsystem is 
given by: 
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Notice that the control law  (12) corresponds to a feedback linearization.  
The system is stable in C<),( θφ  if the gains are small enough and the matrix gain )(zK P  
has negative eingenvalues for all z.  
 

5.  NONLINEAR CONTROL 
It can be shown that the above control strategies only can be applied when small variations of 

the state variables are allowed. If large variations of these state variables can occur different 
control strategies should be applied.  First notice that the yaw angle must be allowed to vary from 
–π to π rad. The linear control law  (5) is based on Table 1, being the relations between variables 
shown in this table expressed in local coordinate frame. Global x and y axes will not coincide 



 

with local x and y axes if a yaw rotation is carried out by the autonomous helicopter. To solve this 
problem, terms of the control actions affected by errors in these coordinates must be rotated with 
respect to the yaw angle: 
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Furthermore, position errors in x, y and z should be allowed to vary from -∞ to ∞ without 
unstabilizing the helicopter. Regarding  (5) and  (15), if x or y position errors increase, control 
actions a and b could be too high and unstabilize roll and pitch angles (Table 1) and therefore 
unstabilize the helicopter. To solve this problem, a nonlinear function µ is used leading to the 
following nonlinear control law: 
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When φ  and θ  are small enough, the linear control law with the rotation given by  (15) is applied 
(µ = 1). However, if errors in the angles are large, µ = 0 and then control actions a and b will not 
be affected by position errors, but will try to stabilize φ  and θ . Interpolation between the two 
regions can be implemented by using fuzzy logic to compute µ. Furthermore, linear control 
techniques can be used to compute the gains ki and ki’ in  (16).  Simulations of the behavior of the 
system under the effect of perturbations are shown in Figure 3. 
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Figure 3. Behavior of the system under the effect of perturbations. 
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The stability of the system with the non-linear control law has been studied using different 
non-linear techniques. Particularly, the harmonic balance and the continuation method have been 
applied. No limit cycles of bifurcations have been found by means of these methods.  

 
6.  CONCLUSIONS 

     Linear control laws can be applied to control autonomous helicopters in hovering. However, if 
large variations of the state variables are considered, linear control techniques are not enough and 
can lead to instability. A two scale dynamic decomposition can be used to analyze the stability of 
the system. The stability of the fast subsystem (rotational dynamics) can be guaranteed by means 
of Lyapunov techniques. Furthermore, feedback linearization can be applied to stabilize the slow 
subsystem (translational dynamics) around the equilibrium point.  
 
Non linear control techniques are useful to control the helicopter when the state variables are 
allowed to vary significantly around their values in the equilibrium. In this paper, a nonlinear 
control law which is able to control the helicopter when large variations occur in the yaw and 
position of the helicopter is proposed. In this control law the rotation due to the yaw is 
considered. Furthermore, a non-linear function precluding the loss of stability when the variations 
in the roll and pitch angles are significant and the helicopter is in a position significantly 
separated from the hovering coordinates is proposed. The application of harmonic balance and 
continuation methods did not detect any limit cycle or bifurcation in this nonlinear feedback 
system. The formal demonstration of the stability of this nonlinear control law is a future work. 
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