
Collision avoidance among multiple aerial robots and other
non-cooperative aircraft based on velocity planning

Juan José Rebollo, Anı́bal Ollero and Iván Maza

Abstract— This paper presents a collision avoidance method
for multiple UAV sharing the same aerial space with non-
cooperative aircraft based on velocity planning. The proposed
method finds a safe trajectory, modifying the velocity profile of
the different vehicles involved in the collision and considering
mobile obstacles. The proposed method applies two steps:
Search Tree and Tabu Search. The objective is to find the
nearest solution to the initially planned UAVs trajectories while
meeting the time constraints on the execution of the algorithms.

I. INTRODUCTION

Multiple UAVs are cooperatively used to carry out tasks
that can not be easily done by a single robot. In this context
it appears the collision avoidance problem we address in
this paper. The collision avoidance problem can be solved in
two different ways. Collision free trajectories can be initially
calculated before the vehicles start moving. This method has
no significant computation time constraints. On the other
hand, initial trajectories would be calculated without taking
into account the trajectories of the other vehicles, and the
potential collision would be solve in real time once they are
detected. In this case computing time plays an important role.
This is the problem we address in this paper.

Recently the problem of motion planning for multiple
robots has received a great deal of attention. In [12], the
problem is written as a linear program subject to mixed
integer constraints, known as a mixed-integer linear program
(MILP). This can be solved using commercial software
written by the Operation Research community. This problem
has a significant complexity because of the high number of
constraints and because it does not consider mobile obstacles.
In [13] a method is proposed to geometrically construct a
collision-free trajectory in (x,y,t) space. First, the authors
evaluate the position and speed of the mobile obstacles.
Assuming that the obstacles speed remain constant, they
compute a set of oblique cylinders in (x,y,t) space to be
avoided. The problem is then to find a trajectory connecting
the initial position to a vertical line representing the goal.
This method does not solve a multirobot motion planning
problem, in which the trajectory of more than one robot
can change to solve collisions. The method in [10] has the
same drawback for the multi-robot problem considered in
this paper. In this case a new trajectory of a vehicle, which

This was partially funded by the Information Society Technologies
priority of the European Comission and the Spanish Science and Education
Ministry.

Juan José Rebollo, Anı́bal Ollero and Iván Maza are with
the Robotics Control and Vision Group, University of Seville,
41092 Seville, Spain, juanjorebollo@hotmail.com,
aollero@cartuja.us.es, imaza@cartuja.us.es.

has only mobile or static obstacles in its trajectory, is found
in the velocity space.

A different approach is set in [2], where alternative so-
lution paths are obtained by generating small variations of
robot motions in space and in time. The Stop & Go strategy
or Shape Changing is used to avoid collisions once the new
path is found. It assumes that the vehicles have rather simple
dynamics, and does not consider mobile obstacles. In [11] a
plan is proposed for steering multiple vehicles between assig-
ned independent start and goal configurations and ensuring
collision avoidance. All the agents cooperate by following
the same traffic rules. They move with constant velocity, a
safety area is defined and the velocity of movement of the
safety area can be zero. However, this method usually leads
to the modification of the paths which could be not needed if
the collisions are avoided by simply modifying the velocity.

A geometrical approach is presented in [3]. In this paper
this direction angle and the velocity of the mobile robots
are used as control variables for navigation and collision
avoidance. This method only ensures collision avoidance
for two vehicles. A speed planning method with mobile
obstacle avoidance was presented in [1]. Mobile obstacles are
included as vehicle’s motion constraints. This method does
not acknowledge the possibility of modifying the trajectory
of all the vehicles involved in the collision.

Kant and Zucker [7] proposed the decomposition of the
collision avoidance problem into the path planning problem
(PPP) and the velocity planning problem (VPP). Once a path
has been planned, a velocity profile that avoids collisions in
that path is found by means of the proposed VPP method.

A 3-D multirobot motion planning problem for multiple
UAVs sharing the space with non-cooperative aircraft (mo-
bile obstacles) is solved in this paper. A new velocity profile
for all the different UAVs involved in the collision will be
calculated. The paper presents a new heuristic approach that
finds suboptimal solutions much faster than optimal methods
by exploring a discretized space. The objective is to find
a collision-free solution that changes our initial trajectory
as little as possible, by changing the velocity profile of the
vehicles. Most vehicles have significant dynamics limitations
that do not allow them to stop or modify their trajectories as
fast as needed. Then, in this paper the dynamic model and
physical constraints of the vehicles are considered.

II. PROBLEM FORMULATION

The first step in solving the collision avoidance problem
is to detect potential collisions. In this paper, the collision
detection algorithm is based on a discretized space. The

dcastro
Text Box
ROBÓTICA 2007 - 7th Conference on Mobile Robots and Competitions
Centro Paroquial de Paderne, Albufeira, Portugal
April 27, 2007




xyz-space is divided into cubic cells. A trajectory can be
described as a sequence of cells with an entrance time
and departure time. Therefore, to ensure a collision-free
trajectory, only one vehicle can be in each cell at a time.
Each UAV knows the trajectories, not as the whole trajectory
but as a list of cells, of the other UAVs. This makes it easier
to check whether a collision will occur, because each UAV
simply has to find temporal overlapping between a cell of its
trajectory and a cell that belongs to another UAV trajectory.

The 3-D grid proposed in this paper decreases the data
transmission among vehicles, because they do not have to
transmit the whole trajectory. This strategy also decrease the
time needed to detect potential collisions in methods that use
the whole trajectories. The objective is to find time conditions
for each cell that give us a free collision trajectory.

In our method it is possible to change the trajectories of
all vehicles involved in the collision to find a better solution.
In case some vehicle cannot change its trajectory to reach
its goal properly it could be considered as a mobile obstacle
and we would keep its initial trajectory.

Let jkh be the identifier of a cell in the space. Cijkh = 1,
if vehicle i passes through cell jkh, or Cijkh = 0 if it does
not. Let tinijkh be the instant in which vehicle i enters in
cell jkh, and toutijkh the instant vehicle i leaves cell jkh.
For Cijkh = 1, Tijkh=[tinijkh, toutijkh], there is a collision
in cell jkh, if:

⋂

i:Cijkh=1

Tijkh 6= ∅ (1)

There is a conflict among N vehicles in cell jkh, if:

M∑

i=1

Cijkh = N (2)

being M the total number of vehicles.
The problem is the computation of voi and Tijkh, so that

in each conflict cell:
⋂

i:Cijkh=1

Tijkh = ∅, (3)

considering:

∆tijkh = toutijkh − tinijkh ∈ [tminil, tmaxil] (4)

and minimizing:

J =
N−1∑

i=0

a(voi − vrefoi)2 + b(∆ti −∆trefi)2 (5)

where N is the number of cells of the trajectories, vrefoi is
the initial velocity in cell number i of the reference trajectory,
voi is the initial velocity of the cell number i of the solution
trajectory, ∆trefi is the time that the reference trajectory
takes to pass through cell number i and ∆ti is the time that
the solution trajectory takes to pass through the cell number i
of the trajectory. In the cost J the parameters a and b weight

the reference initial velocities and reference times in cells.
The objective of the cost (5) is to find a solution trajectory
close to the reference trajectory, which is the trajectory of the
vehicles before detecting the potential collision. Minimizing
this cost the trajecories change is minimun.

Equation 4 takes into consideration the model of the UAV.
The time each vehicle stays in a cell depends on the model
of the vehicle. In tminil and tmaxil, l indicates a certain
conflict, and i points out a certain vehicle. The maximum
and minimum time a vehicle stays in a cell depends on the
distance the vehicle covers in the cell.

To solve collisions we have to consider the vehicles that
are going to crash and all the vehicles whose trajectories cut
the trajectories of the vehicles that are going to crash. The
algorithm proposed here considers three kinds of vehicles in-
volved in a collision. We call the vehicles that are involved in
the potential detected collision direct involved. The vehicles
whose trajectories are cut by the trajectories of the direct
involved can be either indirect involved cooperative UAVs
or non-cooperative aircraft also called mobile obstacles. The
indirect involved vehicles are those cooperative vehicles that
could be involved in the new collision that appear when
solving the collision between direct involved vehicles. The
trajectories of both direct and indirect cooperative vehicles
can be changed. However the problem also involves non-
cooperative aircraft or mobile obstacles which trajectories
can not be changed by the collision avoidance system.
Therefore, the proposed method changes the trajectories of
the direct and indirect involved UAVs, not the trajectories
of the vehicles considered mobile obstacles. It is necessary
to consider vehicles that did not detect a potential collision
originally because if we do not consider them we can find
a solution that avoids the initial collision but causes new
collisions with another UAVs. Sometimes it is beneficial
to consider some cooperative vehicles as mobile obstacles
because it decreases the information exchanged by those
UAVs to solve collisions and the computation time of the
algorithms. This strategy is important when a vehicle’s task
does not allow its trajectory to change.

III. THE PROPOSED COLLISION AVOIDANCE
METHOD

The collision avoidance problem is very difficult to solve
because of the wide range of possible solutions. We can make
the problem easier by considering cells in the space. Cells
do not allow us to find an optimal solution, but they make it
possible to use fast search algorithms to reach our goal. Now
the objective is to find how much time each vehicle stays in
each cell of the trajectory. Even for this new problem, it is
not possible to find an optimal solution in polynomial time,
and it is important to find a fast solution because otherwise
the collision may not be avoided. Because of these reasons,
in this paper we have developed an heuristic method based
on the combination of both the Search Tree Algorithm and
the Tabu Search Algorithm. These two heuristic algorithms
are used to find a solution to the collision avoidance problem
by creating a new velocity profile. The algorithms are based



on the idea of considering some logical rules to find the
solution. The Search Tree algorithm finds a collision-free
solution that does not employ the cost index (5), but it is
the initial solution that the Tabu Search algorithm needs to
find the solution to the problem we address in this paper.
The algorithms consider the UAV model and the distance
travelled by the UAVs in each cell.

III-A. SEARCH TREE ALGORITHM

This algorithm searches for an approximate solution, by
assuming that each vehicle involved in the collision goes as
fast as possible. This algorithm is based on the idea that there
is no collision-free solution if there is a vehicle traveling as
fast as possible and another, as slow as possible, comes from
behind and collides with the first.

Let us define the order of passing as the order in which the
vehicles pass through a conflict. A conflict with N vehicles
involved, has N ! different orders.

The algorithm explores the different orders of passing in
each conflict until a solution is found. First of all, it looks
for a solution exploring the most logical order of passing–in
which the vehicle that has to travel less distance to arrive to
the conflict would pass first. For each order, it is possible to
determine if a solution exists in short computational time. If
there is a solution, it is more probable to find that solution in
the first order we check. If there is no solution for a certain
order of passing, the algorithm permutes the order of passing
of the conflict by changing the order of the vehicles that have
to travel more distance to arrive to the conflict.

If the problem has m conflicts with Ni vehicles involved
in the i conflict, there are N0!N1!...Nm−1! orders to check.
When a certain order is explored and there is no solution, the
algorithm permutes the order of one of the conflicts. First it
permutes the i conflict which cost Ji defined as

Ji = µi − σi (6)

is larger, where µi and σi are the mean and the standard
deviation of the distance that each vehicle involved has to
travel to arrive to a certain conflict.

The algorithm permutes first the order of the vehicles
involved in conflicts that are farther from the beginning of the
trajectory, because when a conflict is near the beginning of
the trajectory the vehicles that have to travel less distance to
arrive to it have a greater chance to pass first in the solution
of the problem. However in a conflict that is farther from
the beginning of the trajectory, another conflict closer to
the beginning could affect the search criterion defined above
(the vehicle which has to travel less distance to arrive to the
conflict passes first). Differences in the distance the vehicles
travel to arrive to a certain conflict make the initial order of
passing more suitable. The term σi in (6) copes with this
concept.

Each UAV trajectory will be associated with a tree. When
we go from one node to another we are passing through a
cell. Then if we go from the first node to the last one, we
will cover the whole trajectory of the UAV associated with

Fig. 1. New branches

Fig. 2. Temporal diagram

that tree. A solution is found if all the trees are completely
built. The distance between two consecutive nodes is directly
related to the time the UAV spends in the associated cell. The
algorithm 1 shows how the trees are built or how the solution
to our problem is found.

Basically, trees grow by calculating the amount of time
every vehicle stays in their trajectory cells traveling at top
speed, until a conflict cell is found. When this conflict is
detected, an associated branch could be created or not de-
pending on the tree’s turn. That turn corresponds to the order
of passing the tree is checking in this iteration. Therefore,
it is a tree’s turn if the branches of other trees associated
to the same conflict cell and associated to UAVs that have
to pass through the conflict before were already created. If
it is the tree’s turn, it checks if a collision occurs in the
conflict by checking if there is temporal overlapping among
the times associated to other trees branches associated to
the same conflict. If a collision appears, the algorithm has
to change the velocity in the previous cells by rebuilding
branches and the UAV associated to this tree can not travel
at its top speed before this conflict.

A bifurcation appears in a tree each time it has to rebuild a
branch because a collision was found. Fig. 1 shows how colli-
sions that appear in the algorithm are solved. The algorithm
backtracks and creates new branches. Those that are in red
are not valid because we would need to change additional
branches lengths to avoid collision. The blue branches are
valid, they allow us to arrive later to cell (8,10,10). Fig.
2 shows us that there was a temporal overlapping between
vehicles 1 and 2 in cell (8,10,10) which indicates a collision.
After creating new branches that collision disappears.



The changes made by the Search Tree Algorithm to
avoid temporal overlapping could affect another trees. Fig.
1 shows that the tree associated with UAV3 has to rebuild
its branches, because UAV1 passes first through cell (5,8,0)
and UAV3 would collide with UAV1 if the tree associated to
UAV3 does not rebuild any branches before the red node.
It has to recalculate the time that UAV3 remains in the
cells previous to (5,8,0), because the condition that has to
be fulfilled in the conflict has changed.

Algorithm 1 Search Tree Algorithm
while there is no solution or all the orders of passing have
not been explored do

while the trees are not complete do
for each tree, if it is not complete do

Advance at the maximum speed Vmax up to the
next conflict, creating the associated branches
if the end was not reached then

if it is a turn in the conflict then
Pass through the conflict, creating the new
associated branch
if there is a collision then

Go back and create new branches that solve
the collision. Another tree may have to
backtrack as well to ensure collision-free
trajectory
If the beginning of the tree is reached upon
backtracking, then there is no solution for
the order of passing being considered.

end if
end if

end if
end for

end while
end while

If the Search Tree algorithm does not find a solution for a
certain order of passing, all the trees start from the beginning
again using the next order of passing set by the search
criterion we defined in (6).

Direct and indirect involved UAVs build the tree in the
same way. However, the trees for mobile obstacles are built
from the beginning and they are not changed because their
trajectories can not be changed.

The Search Tree Algorithm allows us to find a solution
in a reduced time, as compared with methods that solve the
problem of collision avoidance without considering a cell-
divided space method.

III-B. TABU SEARCH

The Search Tree Algorithm finds solutions to our problem
but it does not consider the cost index (5). The Tabu Search
Algorithm[5] (TS) modifies the solution that the search tree
found, by minimizing this cost. Tabu search enhances the
performance of a local search method by using memory
structures to avoid local minima. Several elements have to
be defined for the right performance of the Tabu Search:

Initial solution x: The solution obtained by the Search
Tree Algorithm will be the initial solution. That solution
is formed by a series of time variables direct related
with the time the vehicles stays in each cell. Each
time variable is the time that the vehicle spends in a
particular group of cells. By grouping cells, the number
of variables is reduced which allows us to find the
desired solution faster.
Neighborhood N(x): In each iteration, the TS algorithm
explores the neighborhood N(x), and choose the best
solution. The neighborhood consist of all the solutions
obtained by increasing ∆t, one of the time variables of
x, which have no collisions and meet dynamic model
constraints.
Tabu list: The TS uses memory to remember the last
explored solutions and avoid local minimums. Accor-
ding to [6], 7 has been shown to be a good value for the
size for the list. The Tabu solutions are all the solutions
which distance to the solution in the list is less than
∆t/2 (see Fig. 3).
Aspiration criterion: A solution that is in the neighbor-
hood is valid if it is a non-Tabu solution. But some
solutions have to be considered even if they are a
Tabu solution i.e. solutions that are better than the best
solution found thus far [4].
End criterion: A condition that stops the TS algorithm.
We consider a maximum number of iterations without
decreasing the current optimal value of the cost index.

Algorithm 2 shows TS pseudocode.

Algorithm 2 TS pseudocode
Choose x ∈ X and consider xop = x
while Ending criterion is not true do

Search x′ ∈ N(x) minimizing f(x) being x′ a non-Tabu
solution or meeting the aspiration criteria
if f(x′) < f(xop) then xop = x′ then

Include x′ in the Tabu list
end if

end while

This algorithm changes the time that the direct and indirect
involved vehicles spend in each cell. Fig. 3 shows how the
solution moves from the initial solution that the search Tree
found to another solution in which cost index value is smaller
and which is thus a better solution to the problem we want
to solve.

IV. SIMULATIONS

In the simulation we present in this paper, three UAVs are
considered. UAV1 and UAV2 are sweeping a region, and
UAV3 is a non-cooperative teleoperated UAV, which will
be considered as a mobile obstacle. Fig. 4 shows the xy-
projection of the whole paths of the three UAVs. The dashed
area in Fig. 4, in which the potential collision we are solving
is detected and solved, is shown magnified in xyz-space in
Fig. 5.



Fig. 3. Improving Search Tree solution

Fig. 4. xy-projection of the xyz-paths

Fig. 5. Paths in which the problem is solved

Fig. 6. Temporal diagram of the initial trajectories

IV-A. UAV model

The UAVs move along their trajectories according to the
model [9]:

ẋi = vicos(ψ̇i)
ẏi = visin(ψ̇i)
ψ̇i = αψ(ψc − ψ)
v̇i = αv(vc − v)

ḧi = −αḣhi + αh(hci − hi)

(7)

where αψ , αv , αh and αḣ are known constants that depend
on the implementation of the UAV. Regarding the heading
rate and velocity, we consider:

−c < ψ̇i < c
vmin < vi < vmax

(8)

where c, vmin and vmax are positive constants that depend
on the dynamic capability of the particular UAV.

The maximum and minimum times that an UAV can stay
in a cell are calculated by using the above model. For that
calculus, we need the distance each vehicles travels in a
certain cell. As we saw in (4), the maximum and minimum
time a vehicle can stay in a cell depends on the model and
on the trajectory in the cell.

Both algorithms presented in this paper work using the
dynamic model of the UAVs. The Search Tree calculates
the time associated to each branch considering the dynamic
model. Then, in the TS each new neighbor has to be a
solution that meets the dynamic model.

IV-B. Simulation results

In this section we present the results of proposed method.
UAV1 and UAV2 are considered direct involved vehicles and
UAV3 as a mobile obstacle. Fig. 6 is a temporal diagram
of the original trajectories, in which each point signifies a
transition into the following cell in the trajectory. There are
two conflicts one in cell (13,13,10) between UAV1 and UAV2
and another in cell (16,13,10) between UAV1 and UAV3. Our
objective is to find a collision-free solution as similar to the
initial trajectories as possible.

Fig. 7 shows the results obtained by the Search Tree
Algorithm. We can see that the trajectory of the UAV3



Fig. 7. Search Tree Algorithm solution

Fig. 8. Search Tree Algorithm and Tabu Search solution

did not change because it was considered as a mobile
obstacle. However, UAV1 and UAV2 went as fast as possible
considering that collisions in cells with conflict have to be
avoided. UAV1 goes slower than UAV2 because the conflict
between UAV1 and UAV3 set a temporal constraint in cell
(16,13,10) that it should be satisfied. UAV3 is nearer to the
conflict than UAV1, so the algorithm first checks the solution
where UAV3 passes first. Therefore, UAV1 passes behind
UAV3 and has a temporal constraint in cell (16,13,10).

Now if we execute the Tabu Search algorithm for the
solution we found above, we have the solution that Fig. 8
shows. This solution is almost equal to the initial trajectories
we saw in Fig. 6, but there are no collisions.

A problem involving three UAVs where each UAV has a
30-cell trajectory, and ∆t = 0,1 seconds was solved in less
than a second, which meets the temporal constraints of the
problem. The computation time does not depend on shape
of the path, because each path is a sequence of cells and the
algorithm deals with them in the same way.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new strategy to solve the collision avoi-
dance problem between multiple cooperative UAVs and non-
cooperative (mobile obstacles) aircraft sharing the same spa-
ce has been presented. The objective was to find a solution by
changing in real time the trajectories of the vehicles as little
as possible. This complex problem was solved by using two

heuristic search algorithms to find efficient solutions. The
results obtained were satisfactory because the solution found
allowed the initial trajectories to remain nearly unchanged
and the execution time met our time restrictions. A problem
involving 3 UAVs, having a 30-cell trajectory each UAV was
solved, meeting the temporal constraints.

In situations where it is not possible to find a solution
without changing the path, some strategy has to be used to
change it. We could modify the altitude [14] or create a
roundabout [8] to solve the collisions. But once the new
path is obtained, the algorithm presented in this paper could
be used to find the velocity profile that give us a solution
according to our requirements.

The proposed collision avoidance method can change
or hold constant the trajectories of the different vehicles
involved in a collision. Future work will include the design
of a higher level entity that will decide how each vehicle
should be treated to ensure a near optimal solution.

VI. ACKNOWLEDGMENTS

This work has been partially funded by the AWARE FP6
Project of the European Commission (IST-2006-33579) and
the Spanish AEROSENS project (DPI2005-02293) of the
Spanish National R&D Programme.

REFERENCES

[1] A. Cruz, A. Ollero, V. Muñoz, and A. Garcı́a-Cerezo. Speed planning
method for mobile robots under motion constraints. In Intelligent
Autonomous Vehicles (IAV), pages 123–128, March 1998.

[2] C. Ferrari, E. Pagello, M. Voltolina, J. Ota, and T. Arai. Multirobot
motion coordination using a deliberative approach. In Second Euromi-
cro Workshop on Advanced Mobile Robots (EUROBOT ’97), page 96,
1997.

[3] A. Fujimori and M. Teramoto. Cooperative collision avoidance be-
tween multiple mobile robots. Journal of Robotic Systems, 17(3):347–
363, 2000.

[4] M. Gengreau. An introdution to tabu search. Départament dı́nforma-
tique et de recherche opérationnelle, Université de Montréal.

[5] F. Glover and M. Laguna. “Tabu search”. Kluwer academic
publishers, 1997.

[6] A. Hertz, E. Taillard, and D. de Werra. A tutorial on Tabu Search.
Departament of mathematics, University of Montreal.

[7] K. Kant and S. Zucker. Toward efficient trajectory planning: The
path-velocity decomposition. The International Journal of Robotics
Research, 5(3), 1986.

[8] M. Massink and N. De Francesco. Modelling free flight with collision
avoidance. In Proceedings of the Seventh International Conference on
Engineering of Complex Computer Systems, pages 270–279, 2001.

[9] T. W. McLain and R. W. Beard. Coordination variables, coordination
functions, and cooperative timing missions. Journal of Guidance,
Control, and Dynamics, 28:150–161, 2005.

[10] E. Owen and L. Montano. Motion planning in dynamic environments
using the velocity space. In Intelligent Robots and Systems, 2005.
(IROS 2005), pages 2833–2838, August 2005.

[11] L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi. Decentralized
cooperative policy for conflict resolution in multi-vehicle systems.
2006.

[12] A. Richards and J. P. How. Aircraft trajectory planning with collision
avoidance using mixed integer linear programming. 2002.

[13] T. Tsubouchi and S. Arimoto. Behavior of a mobile robot navigated by
an iterated forecast and planning scheme in the presence of multiple
moving obstacles. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, pages 2470–2475, 1994.

[14] S. Wollkind. Using Multi-Agent Negotiation Techniques for the
Autonomuos Resolution of Air Traffic Conflicts. PhD thesis, University
of Texas, 2004.




