
Data centric middleware for the integration of wireless sensor networks
and mobile robots

Pablo Gil, Iván Maza, Anı́bal Ollero and Pedro José Marrón

Abstract— This paper describes the implementation of a data-
centric middleware for wireless sensor networks in the scope
of the European project AWARE. The middleware implements
a high-level abstraction for integration of wireless sensor net-
works with mobile robots. This is achieved by providing data-
centric access to the information gathered by the wireless sensor
network, which includes mobile robotic nodes. Nodes in the
network organize themselves to retrieve the information needed
by the robots while minimizing the number of transmitted
packets in order to save energy. The implementation has been
tested on tmote and Mica2 nodes.

I. INTRODUCTION

Wireless sensor networks (WSN) are collections of small
devices equipped with sensors that communicate with each
other using wireless technology and are able to organize
themselves in order to interact with their environment. In
contrast to classic sensors that usually need to be placed in
specific locations carefully engineered to get the most out
of expensive equipment [1], WSNs rely on redundancy and
cheap hardware, rather than on accurate sensors, to make
good estimations of the variables to monitor.

Applications of WSNs range from environmental data
gathering to public safety, and might include integration
with robotic systems. An example of integration with robotic
systems consists of a robot which obtains data from its en-
vironment through a WSN. These nodes gather temperature,
light, humidity or even acceleration readings. Radio signals
emitted by the nodes might also be used for location and
tracking purposes, thus allowing the robot locate itself even
in environments where GPS is not available [2], [3].

The integration of WSNs and robotic systems is two fold.
First the robots can be considered to be mobiles nodes that
provide additional sensorial information, improve/repair the
connectivity and collect information from static nodes. On
the other hand, the WSN can be considered as an extension
of the sensorial capabilities of the robots.

The use of robots as mobile nodes in WSNs has been
explored in the last years. Particularly, nodes based in
Crossbow products, like the sensor node Mica2 have been

This work was partially funded by the Information Society Technologies
and the Spanish Science and Education Ministry

Pablo Gil, Iván Maza and Anı́bal Ollero are with the Robotics, Control
and Vision Group

University of Seville, Camino de los descubrimientos S/N, 41092, Seville,
Spain.
{pgilmon,imaza,aollero}@cartuja.us.es
Pedro José Marrón is with the Distributed Systems Research Group
University of Stuttgart, Universitaetsstrasse, 38, D-70569, Stuttgart, Ger-

many
pedro.marron@informatik.uni-stuttgart.de

used in several experiments. These mobile nodes are usually
applied in indoor environments. Several types of robotic
mobile nodes can be found in the literature such as MICAbot
[4], CostBots [5], Robomote [6] and Millibots [7]. In [3] the
use of the sensor network to guide a robot with minimal
sensor capabilities is proposed. On the other hand, some
research activities on the use of robots to deploy WSNs and
to improve their performance has been initiated [8].

The AWARE project (whose name stands for platform
for Autonomous self-deploying and operation of Wireless
sensor-actuator networks cooperating with AeRial objEcts)
is sponsored by the Information for Society Technologies
(IST) and aims to provide a middleware for integration of the
information gathered by different type of sensors -including
a WSN- and mobile robots [9]. This integration between
mobile robots and a WSN is a problem which does not have
a complete solution yet, thus the interest of research on this
subject.

The rest of the document is structured as follows. Section
II describes the AWARE system, in which this middleware
is integrated. Section III points out the characteristics of the
proposed solution. Section IV deals with the implementation
details of the software. Experimental results are described in
section V. Finally, a conclusion and an overview of future
work on this field is outlined in section VI

II. SYSTEM DESCRIPTION

The AWARE platform consists on two different networks
[9], a high bandwidth network (HBN) and a low bandwidth
network (LBN). The HBN is composed of personal comput-
ers, cameras and mobile robots capable of transmitting data
through IEEE 802.3 or IEEE 802.11 networks. A WSN is
also present on the system. This second network is formed
by nodes with very limited computing and data transmitting
capabilities, and it is also called the low bandwith network
(LBN). HBN and WSN are connected through a gateway.
Some mobile robots might be also part of both networks.
This situation is shown in Fig. 1, where an Unmanned
Aerial Vehicle (UAV) and an autonomous ground vehicle
both have WSN nodes attached. Any device capable of direct
communication with both networks might act as a gateway.
The purpose of the middleware in the AWARE system
is to provide seamless communication between entities in
both networks. The middleware described in this paper runs
entirely on the WSN and aims to test the suitability of a
data-centric approach [10], [11] access to the information
gathered by the WSN in the AWARE system.

dcastro
Text Box
ROBÓTICA 2007 - 7th Conference on Mobile Robots and Competitions
Centro Paroquial de Paderne, Albufeira, Portugal
April 27, 2007




Fig. 1. AWARE platform elements

For the rest of the document, we are going to consider
a WSN already deployed over an area in which certain
events or variables need to be monitored. Some of the nodes
might be robotic mobile nodes. After deployment, nodes are
in a quiescent state. The user, which might be a human
operator or an application running on any IP-networked
device, denotes interest in certain events by defining groups.
The user also defines channels, which indicate what kind of
information is to be obtained from the groups. Group and
channel definition is done in terms of attributes, which are
numerical values (e.g.: a sensor reading, the position of the
node). Interaction between the user and the wireless sensor
network always involves the gateway. In our particular case,
the user is a mobile robot requiring information from the
WSN.

The system dynamically adapts to changes in network
topology due to addition of new nodes, changes in the
environment and node failures. This is important because
nodes in the WSN are subject to energy constraints [12], [13]
and are prone to stop working due to battery depletion. When
new nodes are added to a deployed system, configuration
information is transmitted to these new nodes by the previ-
ously deployed ones, without any intervention by either the
gateway or the user. This configuration information consists
on group and channel definition (see sections II-A and II-B
for details). Once the new nodes have receive these data, they
have all the information required to fully integrate with the
deployed system and begin operation. The system is quite
robust in this sense, one only surviving node is enough to
ensure that newly added nodes are automatically configured.

A. Groups

Information about the types of groups defined by the user
is distributed epidemically through the network. One type of
group defines some environmental conditions. Whenever the
values read by the sensors of one node meet these conditions
the node belongs to that type of group. The environmental
conditions that determine membership to a group type are
fixed when the group is defined, and consist of several
conditions that one or more attributes must meet. Group
definition might be changed on-line by the user. Fig. 2 shows
several objects in the environment that are mapped as groups
in the WSN.

Fig. 2. Different objects mapped as groups

A restriction is introduced to ensure that different objects
are mapped as separate groups: communication between
nodes that belong to the same group must be possible without
passing through nodes that do not belong to that group. This
permits the middleware to identify groups of the same type
that are physically separated as different groups, even if they
are of the same type. Communication takes place via multi-
hop routing algorithm, therefore groups might be larger that
the area covered by node’s radio transceivers.

Each group is identified by two numbers: group type and
group identifier (group ID). It can be considered as a two-
level hierarchical identifying system.

Groups form in those areas where certain sensor values are
satisfied. If those areas move, groups follow them, keeping
the same identifier. This way, a certain physical object (e.g.:
fire, gas escape, a robot) can be tracked. Whenever two
groups of the same type merge, one of the two ID’s is
adopted by all the nodes, so at the end there is only one
group. Groups of the same type merge when communication
between their their members is possible by a multi-hop route
comprised exclusively of nodes that belong to those groups.
When a group splits into two or more groups, new group
ID’s are generated in order to name the additional groups
that appear after the split.

Each group has a group leader, which is elected as the
group is created. The election algorithm guarantees that there
is only one leader in each group. When the leader goes
out of the area of the group, either because environmental
conditions change or because nodes are moving, it sends a
handover message to a member of the group, so that the
group ID is maintained. When two groups of the same type
merge, one of the leaders leaves the position and becomes a
member of the merged group. If the leader dies, a new leader
election takes place. The leader regularly sends a beacon to
build a group routing tree and to let other members of the
group know that it is still alive. Group routing tree is used
for data aggregation inside the group (see section II-B for
more details).

B. Channels

Information about active channels is epidemically dis-
tributed on the WSN. When a channel is defined, the user
must select which sensor is to provide the data for that
channel, and the group type and ID to which the channel
is associated. It is also possible to associate the channel
with all the groups or even with all the groups of the same
kind. Information about the sampling rate is also part of the
channel definition, and might be changed later by the user.
These changes are made on-line and take effect immediately.



Fig. 3. Situation previous to (right), and after (left) handover

Data aggregation is performed by every node in the group,
in order to minimize energy consumption. The group leader
performs final aggregation, minimizing the data sent to the
node attached to the gateway. Once the leader finishes data
aggregation it sends the data to the gateway through a multi-
hop routing tree.

Command channels are supported too. Commands are
also distributed epidemically. When a new command packet
arrives at one node, the middleware calls the functions
associated with that command. These functions are provided
by the application in the nodes (see section IV-A).

III. DATA-CENTRIC APPROACH

The idea behind group creation based on environmental
conditions is to provide an abstraction that allows the user
of the network to make references to objects that exist in the
environment, such as a fire, a water spill, etc. The user just
has to provide the conditions that define a group. In the case
of a fire it could be high temperature and certain readings
of gas sensors. The middleware then organizes groups that
match those conditions (e.g.: if there are two separate fires
the user must have an different identifier for each fire). Those
identifiers give the user the possibility to address objects in
the environment in order to obtain data from them. This is
done by defining channels.

Group management also involves object tracking. In the
previous example, if one of the fires is spreading, groups
are reorganized, so that the group that corresponds with that
fire moves along with the fire while maintaining the same
identifier. This is done by adding new nodes to the group in
the direction where the fire is spreading and removing nodes
from the group where there is no longer fire. In case the
leader stops belonging to the group either because the object
(e.g.: fire) is moving or because the node itself changes its
position, a hand over message is transmitted by the leaving
leader. This hand over message is sent to another member of
the group, which then becomes the new leader. The member
of the group to which the message is sent is known by the
leader from the information received from channel data (see
section IV-F). An illustration of hand over situation is shown
in Fig. 3.

In addition, two objects can merge in the environment
(e.g.: two fires might join to form a larger one). Group
management takes this fact into account and allows two
groups of the same type merge. When two groups defined
by the same conditions get together they become one only

Fig. 4. Two groups before (right) and after (left) merge

group with one identifier. One group can also split in two or
more smaller groups (see figure 4).

Groups always have a type identifier and a group ID.
The type identifier is associated with the conditions that
define that group. Thus, two groups of the same type are
always defined by the same conditions. However, there might
be more than one group of the same type. For instance,
there might be two separate fires, and so there should be
two different groups of the type that defines the conditions
for fire. Group ID allows the user to distinguish between
two groups of the same type. Every time a new group is
created the leader generates a group ID, which is mantained
throughout the whole life of the group, even if the initial
leader leaves the group. Group ID is a 16-bit value in
current implementation, so it is highly unlikely, although not
impossible, for two groups of the same type to have the same
group ID. Group merging and splitting imply destruction and
generation of group ID’s as described in section II-A.

IV. IMPLEMENTATION

An implementation of the middleware has been developed
and tested on tmote and Mica2 nodes. The implementation
supports three group types, with a virtually unlimited number
of groups of the same type. With respect to the channels,
three simultaneous channels are supported. One group might
have more than one associated channel. These figures were
chosen for testing convenience and might be increased by
changes in compile-time constants. The middleware also
supports delivering of commands to the application running
on the nodes for local execution in the mote.

Information about the commands, active channels and
active group types is provided by the user and epidemically
injected in the wireless sensor network from the gateway.
This communication scheme has been chosen to provide the
maximum robustness to this communication. This is neces-
sary because the global performing of the system depends on
these data being delivered correctly. Epidemical distribution
provides one of the most reliable communications possible
in a wireless sensor network. The chosen implementation for
epidemical distribution is based on TinyOS Drip component,
which includes several mechanisms for bandwidth and bat-
tery saving [14]. Drip provides the robustness of epidemical
distribution with a reasonably low battery consumption.

Channel data published by the nodes reaches the gateway
by using a hierarchy of collecting trees consisting in two
types of routing trees: a global one, and another one asso-



ciated to each group. Group routing trees are exclusive to
each group and are used for data aggregation inside a single
group. Several group routing trees might exist in the system
at any given time, since every group has its own routing tree.
Group routing trees are built by taking advantage of leader
beacon signals (see section II-A): as the beacon progresses
through the group, nodes make use of it to infer the shortest
path in terms of number of hops to the group leader.

There is another routing tree which is global (i.e.: there
is only one in the whole network). This global tree is used
by leader nodes to send the aggregated data related to their
groups to the gateway.

A. Software architecture

Software on the motes runs under TinyOS and has been
written in nesC language. TinyOS is an operating system
designed for small devices with limited resources, with focus
on WSN devices [15], [16]. TinyOS and nesC allow a
highly modular programming scheme [17]. The software
is composed of different modules that can be effortlessly
exchanged to add new functionalities or to improve existing
ones. Software running on the motes is structured in two
layers: Application and Middleware. The middleware layer
provides the necessary functions to allow access to the motes
in a data-centric publish/subscribe [18] approach from the
gateway. The application layer is in charge of providing the
middleware with information about the node itself: which
kind of data the node can provide, and how to obtain that
data. This architecture allows the use of the same middleware
in all the motes, even if they have different types of sensors.
Attributes also contribute to make the middleware hardware-
independent. Different sensors might provide information
about the same physical variable. This information might be
represented in a standard unit (e.g.: SI units) by an attribute
value. The application must provide the proper function to
convert the raw sensor reading to the appropriate attribute
value, freeing the middleware from this hardware-dependent
task. Attributes are provided by TinySchema [19], a collec-
tion of TinyOS components available with TinyOS standard
distribution. The use of this modular structure allows dealing
with heterogeneity in the WSN hardware, and makes it easy
to upgrade and maintain the software.

B. Group management algorithm

Nodes periodically check whether the sensor readings
match the necessary conditions to determine membership to
every type of group. When conditions for some group are
satisfied, the node checks whether it knows any group of
that kind in its vicinity. If that is the case, the node joins
that group as a member node, and becomes a publisher of
any channel to which that group might be associated. If there
is no group of that type in its vicinity the mote creates a new
group and becomes the leader of that group. When a new
group is created, several leaders might appear. This situation
is solved by a leader election algorithm, that guarantees that
only one leader prevails. In fact, this situation is similar to a
group merge, so the same algorithm solves both problems.

C. Leader election

When a mote creates a group it becomes leader of that
group. The group ID is then set to the ID of the creator
mote, and the weight of that group leader is set to zero. As
soon as one mote becomes leader of one group it begins to
send leader beacons, that let the motes in the vicinity know
about the existence of a group.

Leader beacons are rebroadcasted by all the motes that
belong to the group, so they eventually reach all the members
of the group, regardless of how many hops are necessary to
reach them from the leader. Motes that do not belong to the
group do not forward the beacons, but they listen to them.
Thus, motes that are just outside the border of a group know
that the group exists. Leader beacons include a sequence
number. This is necessary to prevent multiple retransmissions
of the same beacon.

Motes that know about the existence of a group join it as
soon as their sensor readings satisfy the conditions of that
group type. Once they have joined the group, they began
to transmit data regarding the channels to which that group
is associated. Data aggregation is performed in the group
members (see section IV-F) and the data eventually reaches
the leader through the group routing tree. The leader uses the
data received from the members to increase the field weight
in its beacon. Thus, the more data a leader has received
from the member, the higher its weight is. When two groups
merge, or an spontaneous leader appears, one of the leaders
must prevail over the other. This task is accomplished by two
mechanisms: first, members only forward beacons from the
heavier leader they know; second, when a leader receives a
beacon from a heavier leader it becomes a member of that
leader’s group. When two or more leaders of the same weight
are in conflict, group ID is taking into account, so the one
who has the higher group ID is selected. This last feature is
implemented in both mechanisms described before.

D. Association between groups and channels

When a channel is established, it is possible to choose
which group should publish information on that channel.
Current implementation allows the user to establish the group
type and the group ID associated with that channel. There are
special values for any group type and any group ID. Thus,
it is possible to require all the groups of a certain type to
publish information on one channel, as well as all the groups
or just one single group. In case there is more than one group
publishing information in one channel, it is possible for the
user to distinguish the source of every piece of data, because
every data packet includes the group ID of the source.

E. Channel publishing mechanism

Motes regularly check whether there is any active channel
associated with any of the groups to which the mote belongs.
In case a node is to publish on a channel, it obtains the
attribute value at the appropriate rate, and publishes it using
an aggregation algorithm and the group routing tree.



Fig. 5. Channel data aggregation

F. Data aggregation

Data aggregation is very important in a WSN [20], where
it is necessary to reduce the amount of data transmitted due
to power constraints. In this implementation, aggregation of
channel data is performed at every node in the group routing
tree. Every node receives the data to be published on the
channel from its child nodes and sums all the values received.
Then the node sends to its parent node this information,
along with the number of measurements that have been
used to perform the sum. Eventually, the leader receives
the sum of all the readings from all the nodes, as well
as the number of readings, so it can perform the average
of all readings. This approach provides the average (AVG)
of all the readings in the group. The software architecture
is designed to support additional well-defined aggregation
functions. Once the leader node has finished the aggregation
it sends the data through the global routing tree to the
gateway. Fig. 5 represents this data aggregation process.

V. EXPERIMENTAL RESULTS

Preliminary experiments on the integration of WSNs and
robots have been also performed. For these experiments,
Mica2 nodes have been used. The experiment consisted on
tracking Romeo 4R autonomous vehicle by using a group.
In order to detect the presence of Romeo 4R a node was
attached to it (see Fig. 6).

The node attached to Romeo 4R emitted a beacon signal
that was recognized by the rest of the nodes. A group was
created based on the Received Signal Strength Indicator
(RSSI) associated with the signal emitted by the mote on
Romeo 4R. As the robot moved, the group automatically
followed it, either adding or removing members as necessary.
A proper threshold value was chosen for membership to the
group. RSSI decreases its value as received power increases.
We assumed that a higher received power corresponds to a
nearer emitter, so the group was formed by nodes whose
RSSI value was below the threshold. For the experiments,
a 12.5 x 11 meter area was populated with nodes as shown
in Fig. 7. Romeo 4R autonomous robot then passed through

Fig. 6. Romeo 4R autonomous vehicle and detail of WSN node on the
robot

Fig. 7. WSN nodes situation in the experiments

the populated area, and the nodes performed a tracking of
the robot. A sequence showing the nodes that belong to the
group tracking the mobile robot is shown in Fig. 8. RSSI
values were recorded during the experiments. Fig. 9 shows
some of these values compared with the RSSI threshold that
determines membership to the group.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Experiments carried out show the ability to track a mobile
robot by using this approach, as well as obtaining infor-
mation from objects in the environment just by associat-
ing groups to them. This middleware represents a totally
autonomous implementation of data-centric capabilities on
a WSN. Data-centric capabilities are desirable in a WSN
because they allow access to data in an abstract and simpli-
fied way, freeing the user from remotely monitoring sensor
readings not of their interest and allowing an easier inte-
gration with other systems. The experiment described in this
paper shows the possibilities of this data-centric approach for
integration with mobile robots. The mobile robot is able to
obtain data from its surroundings just by querying the group

Fig. 8. Sequence showing group tracking a mobile robot



Fig. 9. RSSI values for motes 1, 4 and 17

created. The middleware takes care that the group is always
formed by the nodes that are near the robot and delivers the
data to it, even if the robot and the nodes move, ensuring
that the robot always gets the expected data.

B. Future work

Group management in terms of attributes allow addition
of countless features to the system. Attributes are numerical
values that might be related to any variable available on the
motes. An interesting application of this fact is to associate
an attribute with the position of the mote. The middleware
would then be able to take the position into account. Since
the position would be the value of an attribute, no change
in the system architecture is necessary to add this feature.
The middleware would treat it as an additional attribute.
Research is currently being carried out in the field of node
estimation [2], and the results could be integrated with the
middleware. Once the motes become location-aware, the
middleware allows to perform very useful tasks such as
location-associated monitoring and event localization for data
coming from mobile nodes. Adding positioning capabilities
to the object tracking features of the middleware allows to
monitor an object also in its position. The combination of
these features with the middleware described in this paper
would allow a robot to monitor its environment by using
the WSN while, at the same time, obtaining positioning
information about the events or objects in its surroundings.

According to the system description in Fig. 1, it is possible
to integrate information gathered by the middleware with the
mobile robot’s navigation system. In the scenario depicted
in Fig. 8, the robot could act as a data collector, as well as
modifying its trajectory depending on data obtained through
the middleware.

VII. ACKNOWLEDGMENTS

This work was partially funded by the European Com-
mission under the AWARE project (IST-2006-33579), and
by the Spanish Government under the AEROSENS project
(DPI-2005-02293). The first author visited the University of
Stuttgart with the funding of the Embedded Wisents Coordi-
nation Action (FP6-004400). The authors gratefully acknowl-

edge the support of the Sensor Networks research group,
Distributed Systems Department, University of Stuttgart, as
well as the assistance for the experiments of Francisco Real
and other members of the Robotics, Control and Vision
Group of the University of Seville.

REFERENCES

[1] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, E. Cayirci, A
survey on sensor networks, IEEE Communications Magazine, vol. 40,
issue 8, August 2002, pp 102-114.

[2] Vaidyanathan Ramadurai, Mihail L. Sichitiu, Localization in Wireless
Sensor Networks: A Probabilistic Approach, Proceedings of the 2003
International Conference on Wireless Networks, 2003, pp 275-281.

[3] Maxim A. Batalin, Myron Hatting, and Gaurav S. Sukhatme, Mobile
Robot Navigation using a Sensor Network, Proc. of the 2004 IEEE
Intl. Conference on Robotics and Automation, April 2004.

[4] M. Brett McMickell, Bill Goodwine, and Luis Antonio Montestruque,
MICAbot: A Robotic Platform for Large-Scale Distributed Robotics,
Proc. of the 2003 IEEE, Intl. Conference on Robotics and Automation,
September 2003.

[5] Sarah Bergbreiter, and K.S. J. Pister, CostBots: An Off-theShelf
Platform for Distribuited Robotics, Proc. of the 2003 IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems, October 2003.

[6] Karthik Dantu, Mohammad Rahimi, Hardik Shah, Sandeep Babel,
Amit Dhariwal and Gaurav Sukhatme, Robomote: Enabling Mobility
in Sensor Networks, ACM Journal Name, Vol.1 No. 1, December 2004.

[7] Luis E. Navarro-Serment, Robert Grabowski, Christiian J.J. Paredis,
and Pradeep K. Khosla, Millibots, IEEE Robotics and Automation
Magazine, pp. 31-40, December 2002.

[8] P.Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme,
Autonomous Deployment and Repair of a Sensor Network using an
Unmanned Aerial Vehicle, Proc. of the 2004 IEEE Intl. Conference
on Robotics and Automation, April 2004.

[9] The AWARE project team AWARE project webpage,
http://www.aware-project.net, last visited: 24-02-2007.

[10] Chien-Chung Shen, Chavalit Srisathapornphat and Chaiporn Jaikaeo,
Sensor Information Networking Architecture and Applications, IEEE
Personal Communications, vol. 8, issue 4, August 2001, pp 52-59.

[11] Abdelzaher T., Blum B., Cao Q., Chen Y., Evans D., George J.,
George S., Gu L., He T., Krishnamurthy S., Luo L., Son S., Stankovic
J., Stoleru R., Wood A., EnviroTrack: Towards an Environmental
Computing Paradigm for Distributed Sensor Networks, Proceedings of
the 24th International Conference on Distributed Computing Systems
(ICDCS’04).

[12] Kay Romer, Oliver Kasten, Friedemann Mattern, Middleware Chal-
lenges for Wireless Sensor Networks, Mobile Computing and Com-
munications Review, vol. 6, Number 4.

[13] Yang Yu, Bhaskar Krishnamachari and Viktor K. Prasanna, Issues in
Designing Middleware for Wireless Sensor Networks, IEEE Network,
vol. 18, issue 1, January/February 2004, pp 15-21.

[14] Gilman Tolle Drip 1.0 documentation,
http://www.tinyos.net/scoop/story/2005/2/16/174147/450, last visited:
05-02-2007.

[15] TinyOS team - various authors TinyOS-1.x web documentation,
http://www.tinyos.net/tinyos-1.x/doc/index.html, last visited: 05-02-
2007.

[16] Philip Levis, TinyOS programming,
http://csl.stanford.edu/ pal/pubs/tinyos-programming.pdf, last visited:
05-02-2007.

[17] nesC team - Eric Brewer, David Culler, David Gay, Phil
Levis, Rob von Behren and Matt Welsh nesC project site,
http://nescc.sourceforge.net/, last visited: 05-02-2007.

[18] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, Anne-Marie
Kermarrec, The many faces of publish/subscribe, ACM Computing
Surveys, vol. 35 , Issue 2, June 2003, pp 114-131.

[19] Wei Hong and Sam Madden, TinySchema: Manag-
ing Attributes, Commands and Events in TinyOS,
http://telegraph.cs.berkeley.edu/tinydb/tinyschema doc/index.html,
last visited: 05-02-2007.

[20] Krishnamachari, L. Estrin, D. Wicker, S., The impact of data aggrega-
tion in wireless sensor networks, Proceedings of the 22nd International
Conference on Distributed Computing Systems, 2002, pp 575-578.




