
Data centric middleware for the integration of wireless sensor networks
and mobile robots

Pablo Gil, Iván Maza, Anı́bal Ollero and Pedro José Marrón

Abstract— This paper describes the implementation of a data-
centric middleware for wireless sensor networks in the scope
of the European project AWARE. The middleware implements
a high-level abstraction for integration of wireless sensor net-
works with mobile robots. This is achieved by providing data-
centric access to the information gathered by the wireless sensor
network, which includes mobile robotic nodes. Nodes in the
network organize themselves to retrieve the information needed
by the robots while minimizing the number of transmitted
packets in order to save energy. The implementation has been
tested on tmote and Mica2 nodes.

I. INTRODUCTION

Wireless sensor networks (WSN) are collections of small
devices equipped with sensors that communicate with each
other using wireless technology and are able to organize
themselves in order to interact with their environment. In
contrast to classic sensors that usually need to be placed in
specific locations carefully engineered to get the most out
of expensive equipment [1], WSNs rely on redundancy and
cheap hardware, rather than on accurate sensors, to make
good estimations of the variables to monitor.

Applications of WSNs range from environmental data
gathering to public safety, and might include integration
with robotic systems. An example of integration with robotic
systems consists of a robot which obtains data from its en-
vironment through a WSN. These nodes gather temperature,
light, humidity or even acceleration readings. Radio signals
emitted by the nodes might also be used for location and
tracking purposes, thus allowing the robot locate itself even
in environments where GPS is not available [2], [3].

The integration of WSNs and robotic systems is two fold.
First the robots can be considered to be mobiles nodes that
provide additional sensorial information, improve/repair the
connectivity and collect information from static nodes. On
the other hand, the WSN can be considered as an extension
of the sensorial capabilities of the robots.

The use of robots as mobile nodes in WSNs has been
explored in the last years. Particularly, nodes based in
Crossbow products, like the sensor node Mica2 have been

This work was partially funded by the Information Society Technologies
and the Spanish Science and Education Ministry

Pablo Gil, Iván Maza and Anı́bal Ollero are with the Robotics, Control
and Vision Group

University of Seville, Camino de los descubrimientos S/N, 41092, Seville,
Spain.
{pgilmon,imaza,aollero}@cartuja.us.es
Pedro José Marrón is with the Distributed Systems Research Group
University of Stuttgart, Universitaetsstrasse, 38, D-70569, Stuttgart, Ger-

many
pedro.marron@informatik.uni-stuttgart.de

used in several experiments. These mobile nodes are usually
applied in indoor environments. Several types of robotic
mobile nodes can be found in the literature such as MICAbot
[4], CostBots [5], Robomote [6] and Millibots [7]. In [3] the
use of the sensor network to guide a robot with minimal
sensor capabilities is proposed. On the other hand, some
research activities on the use of robots to deploy WSNs and
to improve their performance has been initiated [8].

The AWARE project (whose name stands for platform
for Autonomous self-deploying and operation of Wireless
sensor-actuator networks cooperating with AeRial objEcts)
is sponsored by the Information for Society Technologies
(IST) and aims to provide a middleware for integration of the
information gathered by different type of sensors -including
a WSN- and mobile robots [9]. This integration between
mobile robots and a WSN is a problem which does not have
a complete solution yet, thus the interest of research on this
subject.

The rest of the document is structured as follows. Section
II describes the AWARE system, in which this middleware
is integrated. Section III points out the characteristics of the
proposed solution. Section IV deals with the implementation
details of the software. Experimental results are described in
section V. Finally, a conclusion and an overview of future
work on this field is outlined in section VI

II. SYSTEM DESCRIPTION

The AWARE platform consists on two different networks
[9], a high bandwidth network (HBN) and a low bandwidth
network (LBN). The HBN is composed of personal comput-
ers, cameras and mobile robots capable of transmitting data
through IEEE 802.3 or IEEE 802.11 networks. A WSN is
also present on the system. This second network is formed
by nodes with very limited computing and data transmitting
capabilities, and it is also called the low bandwith network
(LBN). HBN and WSN are connected through a gateway.
Some mobile robots might be also part of both networks.
This situation is shown in Fig. 1, where an Unmanned
Aerial Vehicle (UAV) and an autonomous ground vehicle
both have WSN nodes attached. Any device capable of direct
communication with both networks might act as a gateway.
The purpose of the middleware in the AWARE system
is to provide seamless communication between entities in
both networks. The middleware described in this paper runs
entirely on the WSN and aims to test the suitability of a
data-centric approach [10], [11] access to the information
gathered by the WSN in the AWARE system.



ciated to each group. Group routing trees are exclusive to
each group and are used for data aggregation inside a single
group. Several group routing trees might exist in the system
at any given time, since every group has its own routing tree.
Group routing trees are built by taking advantage of leader
beacon signals (see section II-A): as the beacon progresses
through the group, nodes make use of it to infer the shortest
path in terms of number of hops to the group leader.

There is another routing tree which is global (i.e.: there
is only one in the whole network). This global tree is used
by leader nodes to send the aggregated data related to their
groups to the gateway.

A. Software architecture

Software on the motes runs under TinyOS and has been
written in nesC language. TinyOS is an operating system
designed for small devices with limited resources, with focus
on WSN devices [15], [16]. TinyOS and nesC allow a
highly modular programming scheme [17]. The software
is composed of different modules that can be effortlessly
exchanged to add new functionalities or to improve existing
ones. Software running on the motes is structured in two
layers: Application and Middleware. The middleware layer
provides the necessary functions to allow access to the motes
in a data-centric publish/subscribe [18] approach from the
gateway. The application layer is in charge of providing the
middleware with information about the node itself: which
kind of data the node can provide, and how to obtain that
data. This architecture allows the use of the same middleware
in all the motes, even if they have different types of sensors.
Attributes also contribute to make the middleware hardware-
independent. Different sensors might provide information
about the same physical variable. This information might be
represented in a standard unit (e.g.: SI units) by an attribute
value. The application must provide the proper function to
convert the raw sensor reading to the appropriate attribute
value, freeing the middleware from this hardware-dependent
task. Attributes are provided by TinySchema [19], a collec-
tion of TinyOS components available with TinyOS standard
distribution. The use of this modular structure allows dealing
with heterogeneity in the WSN hardware, and makes it easy
to upgrade and maintain the software.

B. Group management algorithm

Nodes periodically check whether the sensor readings
match the necessary conditions to determine membership to
every type of group. When conditions for some group are
satisfied, the node checks whether it knows any group of
that kind in its vicinity. If that is the case, the node joins
that group as a member node, and becomes a publisher of
any channel to which that group might be associated. If there
is no group of that type in its vicinity the mote creates a new
group and becomes the leader of that group. When a new
group is created, several leaders might appear. This situation
is solved by a leader election algorithm, that guarantees that
only one leader prevails. In fact, this situation is similar to a
group merge, so the same algorithm solves both problems.

C. Leader election

When a mote creates a group it becomes leader of that
group. The group ID is then set to the ID of the creator
mote, and the weight of that group leader is set to zero. As
soon as one mote becomes leader of one group it begins to
send leader beacons, that let the motes in the vicinity know
about the existence of a group.

Leader beacons are rebroadcasted by all the motes that
belong to the group, so they eventually reach all the members
of the group, regardless of how many hops are necessary to
reach them from the leader. Motes that do not belong to the
group do not forward the beacons, but they listen to them.
Thus, motes that are just outside the border of a group know
that the group exists. Leader beacons include a sequence
number. This is necessary to prevent multiple retransmissions
of the same beacon.

Motes that know about the existence of a group join it as
soon as their sensor readings satisfy the conditions of that
group type. Once they have joined the group, they began
to transmit data regarding the channels to which that group
is associated. Data aggregation is performed in the group
members (see section IV-F) and the data eventually reaches
the leader through the group routing tree. The leader uses the
data received from the members to increase the field weight
in its beacon. Thus, the more data a leader has received
from the member, the higher its weight is. When two groups
merge, or an spontaneous leader appears, one of the leaders
must prevail over the other. This task is accomplished by two
mechanisms: first, members only forward beacons from the
heavier leader they know; second, when a leader receives a
beacon from a heavier leader it becomes a member of that
leader’s group. When two or more leaders of the same weight
are in conflict, group ID is taking into account, so the one
who has the higher group ID is selected. This last feature is
implemented in both mechanisms described before.

D. Association between groups and channels

When a channel is established, it is possible to choose
which group should publish information on that channel.
Current implementation allows the user to establish the group
type and the group ID associated with that channel. There are
special values for any group type and any group ID. Thus,
it is possible to require all the groups of a certain type to
publish information on one channel, as well as all the groups
or just one single group. In case there is more than one group
publishing information in one channel, it is possible for the
user to distinguish the source of every piece of data, because
every data packet includes the group ID of the source.

E. Channel publishing mechanism

Motes regularly check whether there is any active channel
associated with any of the groups to which the mote belongs.
In case a node is to publish on a channel, it obtains the
attribute value at the appropriate rate, and publishes it using
an aggregation algorithm and the group routing tree.


