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Abstract— This paper presents a new method for the 3D
localization of an outdoor Wireless Sensor Network (WSN)
by using a single flying beacon-node on-board an autonomous
helicopter, which is aware of its position thanks to a GPS
device. The technique is based on particle filtering and does not
require any prior information about the position of the nodes
to be estimated. Its structure and stochastic nature allows a
distributed computation of the position of the nodes. The paper
shows how the method is very suitable for outdoor applications
with robotic data-mule systems. The paper includes a section
with experiments.

I. INTRODUCTION

Latest advances in low-power electronics and wireless
communication systems have made possible a new genera-
tion of devices able to communicate, sense environmental
variables and even process this information, the Wireless
Sensor Networks (WSNs). In addition, the recent commer-
cialization of these devices has increased the applicability
and research efforts in this area.

One of the major challenges for WSN deployment is the
localization of the sensor nodes. This localization is essential
to all those applications that require spatial mapping of
the sensed data for further processing, and is also useful
for the overall system performance as the availability of
positioning information enable the adoption of low overhead
protocols such as geographic-based routing schemes. It has
been pointed out [1] that, when the number of sensors is
large, the manual deployment and position recording is error-
prone and, in many applications, hand-placing the sensor is
not an option. Thus, for example, if the sensors are scattered
from an airplane, a different localization method should be
employed. This is particularly true for networks deployed
in emergency response scenarios without preexisting in-
frastructure, as considered in the AWARE project devoted
to the development of a platform for autonomous self-
deploying and operation of wireless sensor-actuator networks
cooperating with aerial vehicles.

The Global Positioning System (GPS) provides an imme-
diate solution to the problem of localizing a node in outdoor
scenarios. However, having GPS in all the nodes is often
not a viable solution in many scenarios, due to its cost,
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the associated energy consumption, and its inapplicability
in different scenarios.

Outdoor WSN localization begins to be an active research
topic where different approaches has been proposed [1], [2],
[3], [4]. Most of them are based on the localization of entire
network by knowing the position of a small and well dis-
tributed set of static nodes, usually called beacon-nodes, with
GPS or other positioning devices. Then, the radio interface
of the wireless nodes is used to estimate the distance to the
beacon-nodes. A pre-calibrated relation between the received
signal strength (RSSI) and the distance is used to obtain a low
accurate estimation which worsens with the distance from
the node to the beacon-nodes. Improvements in the radio
interface to increase the directivity [5] or the inclusion of
new features like time-of-flight have been proposed [6] but,
in general, they lead to a power consumption growth and to
a radio coverage reduction. Unfortunately, even having good
localized beacon-nodes and a reliable system to propagate
this information, the results will be poor if the beacon-nodes
are not well distributed in the network.

This paper proposes the use of a mobile node, i. e. a
robotic vehicle with GPS, for the localization of the nodes
of the network by using the RSSI value to propagate the
position information of the robot to the rest of the network.
Although the proposed method can be used with any au-
tonomous vehicle, the implementation with autonomous heli-
copters is proposed in the paper. These vehicles overcome the
limitations of accessing with ground vehicles close enough
to the static nodes in many scenarios [7]. Furthermore, the
use of these aerial vehicles, flying close the ground nodes,
favor the propagation of the radio signals by decreasing the
effect of obstacles that influence the signal strength.

Particle filtering is used to process the RSSI value in
each node in order to localize the nodes of a static wireless
network. The method takes into account the uncertainty
associated to the RSSI value in order to optimally compute
the mean and standard deviation of the localization of the
node. In addition, the stochastic nature of the technique
allows to extend the classic localization framework, a set
of fixed beacon-nodes distributed in the network, to a more
flexible one where mobile beacon-nodes are considered.

Initial results on wireless sensor localization using signal
strength were conducted by Ladd et al. in [8], where ethernet
devices were used to localize and track a human operator
inside a building with good results in terms of localization
error. Later, mobiles nodes have been considered for outdoor
network localization in [1] and [9] by means of stochastic
grids and triangulation respectively. In this paper we propose



the application of particle filters. These filters are more
flexible than grids or simple triangulation, as the number of
particles can be adjusted depending on the resources and the
stochastic nature of the measures can be considered into the
estimation process. Also, as it will be seen, the framework
presented can localize the nodes in 3D; employing a 3D
grid would be too costly for a node in terms of memory
requirements.

The proposed method is very suitable for data-mule sys-
tems in which the mule is a robot able to self-localize
and that carries a node. This node is used to recover the
information from the WSN while, at the same time, is
employed as a beacon node for network localization.

The paper is structured as follows. Firstly, the approach is
outlined in section II. Section III will detail the proposed
method to address the localization problem. Finally, the
implementation and some experimental results with a real
network are shown.

II. LOCALIZATION FRAMEWORK

The proposed localization framework is composed by a
set of WSN nodes which position is completely unknown
and by a moving aerial robot beacon (MARB). The moving
robot has attached a positioning device (i.e. GPS) and can
move over the area covered by the network.

As mentioned before, the RSSI of the signal received from
MARB and its positions are used to estimate the position of
the rest of the network nodes. This approach presents the
following benefits with respect other techniques as mean or
weighted mean triangulation:
• A Bayes filter is employed for the estimation of the

localization of the nodes. The estimated position of the
nodes will be represented by a probability distribution.
This allows to take into account the uncertainty on mea-
sures involved in the process, mainly the RSSI/Distance.

• The localization process is based on a mobile aerial
robot beacon (MARB), which allows to reduce one of
the endemic problems of the RSSI-based localization
algorithms: the distortion induced by radio-frequency
effects. The chance of measuring the RSSI at different
beacon positions and orientations permits automatic
detection of outliers and, hence, an improvement in the
distance computation.

• It is not required to filter the RSSI measures because
they will be automatically weighted by its associated
standard deviation, making easier the localization pro-
cess. Then, it is possible to use the RSSI measures of
all the beacons even if they are relatively far from the
node.

Thus, it is not strictly required three or more beacons to
have an estimation of the position of every node, with the
MARB providing information from separate positions. There
is not triangulation but an estimation process so that the
algorithm can consider hypotheses in which the estimated
position is spread over a certain area. This increases the
flexibility of the method.

Algorithm 1 {x(i)
k ,ω(i)

k ; i = 1, . . . ,L} ← Parti-
cle filter({x(i)

k−1ω(i)
k−1; i = 1, . . . ,L},zk = {xb

k ,RSSIk})

1: for i = 1 to L do
2: sample x(i)

k ∼ p(xk|x(i)
k−1)

3: Compute d(i)
k = ‖x(i)

k −xb
k‖

4: Determine µ(d(i)
k ) and σ(d(i)

k )
5: Update weight of particle i ω(i)

k = p(RSSIk|x(i)
k )ω(i)

k−1

with p(RSSI|x(i)
k ) = N (µ(d(i)

k ),σ(d(i)
k ))

6: end for
7: Normalize weights {ω(i)

t }, i = 1, . . . ,L
8: Compute Ne f f
9: if Ne f f < Nth then

10: Resample with replacement L particles from
{x(i)

k ,ω(i)
k ; i = 1, . . . ,L}, according to the weights ω(i)

k
11: end if

III. PARTICLE FILTER BASED LOCALIZATION

The objective of the localization algorithm is to estimate
the position of the nodes of the network from the data
provided by the MARB. A separated filter per node will
be implemented. Then, the state to be estimated consists of
the position of the node x =

(
X Y Z

)T . The information
about the state will be obtained from the set of measurements
z1:k received up to time k. This set of measurements consists
of pairs of RSSI and MARB position values {xb

k ,RSSIk} (the
algorithm considers a moving beacon node, and thus the time
subscript for the beacon node position).

In the Bayesian framework employed, the information
about the state is represented by the conditional probability
distribution p(xk|z1:k). This distribution (the posterior) can be
estimated online while functioning the network. Therefore,
the position will be estimated and updated recursively.

A. Filter Overview

Particle filtering is a technique for implementing recursive
Bayesian filtering by Monte Carlo sampling. The key idea
is to represent the posterior density at time k p(xk|z1:k) by a
set of independent and identically distributed (i.i.d.) random
particles {x(i)

k } according to the distribution. Each particle is
accompanied by a weight ω(i)

k . Sequential observations and
model-based predictions will be used to update the weight
and particles respectively. See [10] for more details.

Particle Filters allow Bayesian estimation to be carried
out approximately but in a structured and iterative manner,
that simplifies the implementation on nodes. In general, it is
very suitable for non-gaussian stochastic processes with non-
linear dynamics and very useful when the posterior p(xk|z1:k)
has no parametric form or this form is unknown. Therefore,
Particle Filter seems to be a good solution to address the
localization problem.

Although there are many possible implementations, in the
proposed algorithm the prior probability distribution p(x0) is
used as the importance (or proposal) distribution to draw the
initial set of particles at time 0, i.e. x(i)

0 ∼ p(x0). Then, these



particles are recursively re-estimated following the algorithm
shown in Algorithm 1.

The next subsections describes the main issues in the
actual implementation of the algorithm. As the likelihood
function is the core of the algorithm, it is described first.
Then the updating step, the prior distribution, the prediction
step and the resampling procedure are detailed. Finally, some
guidelines for computing the mean and standard deviation in
the filter are mentioned.

B. Learning the likelihood function

The likelihood function p(zk|xk) plays a very important
role in the estimation process. In this case, this function
expresses the probability of obtaining a given RSSI value
from a beacon node given the position of the receiving node
xk.

Experimental results show that there exists a correlation
between the distance to the emitter and the RSSI value,
although this correlation decreases with the distance between
the two nodes, transmitter and receiver. This is mainly caused
by radio-frequency effects such as radio reflection, multi-path
or antenna polarization.

The model used here considers that p(zk|xk) follows a
Gaussian distribution for a given value of dk, the distance
between the position of the node and the beacon node ‖xk−
xb

k‖:

RSSIk = µ(dk)+N (0,σ(dk)) (1)

This section deals with the computation of the relations
µ(dk) and σ(dk) that relate the received RSSI in one node
and the distance to the emitter, which are estimated off-line
from a training data set.

A couple of Mica2 Crossbow nodes have been distanced
from 0 to 30 meters and the RSSI has been recorded for each
distance. This experiment has been repeated with several
antenna polarizations. A least squares process was used to
compute the µ(d) and σ(d) functions that best fit the set of
data. The results are shown in Fig. 1. Notice that the RSSI
of these nodes is a dimensionless value from 0 (max power)
to 390 (min power). As expected, it can be seen that the
standard deviation increase with the distance d

This experiment is only carried out for a couple of nodes of
the network. Unfortunately, the nodes on a WSN are similar
but not exactly the same, and therefore the previous relations
should be computed for all the nodes of the network. To
avoid this problem the computed standard deviation has been
intentionally overestimated in order to include as much nodes
as possible. However, this overestimation will increase the
time needed to converge to a correct solution in the Particle
Filter.

Nevertheless, the experiment data agree with those ob-
tained in [1], where the authors also identify a quasi-gaussian
distributions in the relations RSSI vs. distance.

C. Updating

Once learned, the functions µ(d) and σ(d) are used online
in the estimation process. Each time a new measure is
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Fig. 1. RSSI-Distance function, µ(d) and σ(d). This function relates
the distance between two nodes and the RSSI received in mean and std.
deviation. It has been experimentally computed using a large set of couples
RSSI/distance. Blue dots: A sub-set of the experimental set of data. Green
solid line: Estimated mean µ(d). Red dashed line: standard deviation
confidence interval based on σ(d).

received, the weights of the particles are updated considering
the likelihood of the received data (lines 3, 4 and 5 of
Algorithm 1).

The procedure is as follows. For each particle, the distance
d(i)

k = ‖x(i)
k − xb

k‖ is obtained. From this distance, the mean
and variance of the conditional distribution p(zk|x(i)

k ) are
obtained, so that p(zk|x(i)

k ) = N (µ(d(i)
k ),σ(d(i)

k )).
The probability of the actual RSSI value under this distri-

bution is finally employed to update the weight of the particle
ω(i)

k .

ω(i)
k =

1

σ(d(i)
k )
√

2π
exp(− (RSSIk−µ(d(i)

k ))2

2σ(d(i)
k )2

)ω(i)
k−1 (2)

D. Initializing the filter. The prior model

Up to now, nothing has been commented about the initial
distribution from which the particles are drawn.

The filter is initiated when the first message from the
MARB is received. In this case, the RSSI distance functions
of Fig. 1 are used inversely as in the estimation process.
From the RSSI values, an initial distance is estimated, and
also a corresponding variance on the distance.

The prior considered is then an uniform distribution on an
spherical annulus, in which the inner and outer radius depend
on the estimated mean and variance (see Fig. 2). As the
number of particles is limited, not all the messages received
initiate the filter. Only when a RSSI value corresponding to a
variance below a threshold is received, the filter is initiated,
in order to have a good resolution (particles per volume unit).

E. Prediction

The nodes of the WSN are static, so the prediction step
might be ommitted (that is, with probability 1 each node is
in the same position at time k and k− 1). However, as the



Fig. 2. Prior distribution. The initial samples are drawn from an uniform
distribution over an spherical annulus. The inner (r1) and outer (r2) radius
are a function of the estimated distance from the RSSI and its variance.

resolution of particles over the state space is limited, a ran-
dom move is added to the particles (step 2 of Algorithm 1),
in order to search locally over the position space around the
position of the previous time step. Therefore, the prediction
model is:

p(xk|xk−1) = N (xk−1,Σk−1) (3)

The value of Σ depends on the distribution of particles,
mainly the density of particles per volume unit.

F. Resampling

When the filter is running, the weights of the particles with
high likelihood will increase, while most of the particles will
rest at places of very low likelihood on the state space.

Again, as the number of particles is limited, a resampling
step (line 10 of Algorithm 1) is included in order to increase
the accuracy of the estimated position, duplicating particles
with high weights and eliminating those with very low
weights.

In order to overcome some of the known problems with the
resampling stage, two additional considerations are taken into
account: first, resampling only takes place when the effective
number of particles Ne f f is below a threshold. The effective
number is computed as follows:

Ne f f =

[
L

∑
i=1

(ω(i)
k )2

]−1

(4)

The threshold is set to the 10% of the number of particles,
so Nth = 0.1L.

Second, the algorithm employed for resampling is a low
variance sampler. It will allow to spread the particles over
the maximum likelihood areas. The algorithm used is the one
described in [11] (p. 110).

G. Estimation of mean and std. deviation

The mean and standard deviation from the filter will be
computed as follows:

(a) (b)

Fig. 3. Experiment setup. (a): One of the deployed nodes with a dragonfly
on the antenna. (b): The UAV. At the back of the electronic box it can be
seen the beacon node with its antenna.

µk =
L

∑
i=1

[x(i)
k ω(i)

k ] (5)

σ2
k =

L

∑
i=1

(x(i)
k −µk)2ω(i)

k (6)

One of the benefits of the Particle Filter is that allows
to face multi-modal or non-parametric hypothesis. While the
posterior distribution will depend on the measures during the
transient state, the filter approximately converge to a Normal
distribution in the position of the node. It has been considered
that the filter converges when σk is below a certain threshold
during a period of time. In the implementation the threshold
was set to 3m during at least 15 messages.

If the filter converges at time k0, the belief on the position
of the node can be modeled as a Normal distribution such as
N (µk0 ,σk0). This allows switching to another filter imple-
mentation like Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF) which will efficiently take into account
the gaussian nature of the posterior distribution.

IV. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In order to test the previous ideas, an experimental setup
was conceived. A small WSN composed by 5 nodes was
deployed outdoor. The nodes of the network are Mica2 nodes
(see Fig. 3.a), with the following characteristics:
• Atmega128L microcontroller at 7.3728 Mhz
• Chipcon CC1000 FSK radio transceiver, 900 Mhz band.

Up to 4 dBm transmission power. Up to 78.4 kbps 100
meter outdoor range.

• Radio programmable for quick software update on de-
ployed networks.

• 512 KB non-volatile memory for programs and retrieved
data.

Before the experiment starts, the position of all the nodes
were computed by means of a differential GPS device in
order to validate the estimation from the Particle Filter.

In the setup, a node of the network is carried by the HERO
3 autonomous helicopter of the University of Seville (see Fig.
3.b). This vehicle is able to localize itself with high accuracy
by using a differential GPS device. The node is connected
though a serial port to the onboard computer, so that the UAV
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Fig. 4. Estimated position of the nodes versus their position measured
employing DGPS. Green dots: real position of the nodes. Red crosses:
Estimated position. Red dashed line: standard deviation confidence interval.
Solid blue line: UAV trajectory.

position is transmitted to the node. It will act as a MARB
for the WSN.

The algorithm proposed in the above section can be imple-
mented in the gateway (laptop) of the WSN. The middleware
presented in [12] have been used. Then, the network can be
localized as follows:

1) The UAV flies over the WSN.
2) The beacon node onboard the UAV sends a message

with its position once per second.
3) When a node receives a beacon message, a message

with the position of the beacon and the RSSI on
reception is sent to the gateway of the WSN.

4) The information is stored in the gateway and the
position of all the nodes are computed by using the
above algorithm.

The filter has been setup with 1000 particles per node
and non-prior information about the node was assumed. Fig.
4 shows the estimated mean position of the three nodes of
the network (the node on board the UAV and the gateway
are not considered) and the 3−σ confidence interval, and
the trajectory carried out by the helicopter. It can be seen
that the uncertainty in Y axis is slightly shorter than in X
axis due to the motion of the MARB, which mainly moved
over the Y axis. In fact, the figure shows how the maximum
triangulation in X is about 20 meters while in Y is about 80
meters.

Detailed information about the estimated position of one of
the nodes of the network by using the algorithm of Section
III is shown in Fig. 5. It can be seen that the estimations
converge to the actual position in the X, Y and Z coordinates.
Fig. 6 shows the estimated standard deviation from the
particles compared to the error between the estimated mean
and the actual position. It can be seen that the estimated
deviation from the particles is consistent with the error
committed. Notice the hard transitions occurred at messages
60 and 80, it was caused by an automatic resampling step
carried out in the particle filter.

The evolution of the Particle Filter is shown in Fig. 7.
The initial sphere-like distribution converge gradually to
an unimodal distribution approximately centered in the real
position of the node.

V. CONCLUSIONS AND FUTURE WORK

The paper has presented a particle filter for node position
estimation on a WSN. The filter integrates the RSSI measures
of the signal received from an aerial robot acting as a
beacon node with GPS in order to estimate the position.
The experiments have shown the feasibility of the approach.
Although the particle filter for each node was run in a
laptop in the current implementation, the filter setup was
conceived taking into account the processing capabilities of
the nodes. Next steps will adapt the presented approach to
be implemented inside the nodes.

There are several aspects that will be addressed in the
short future. The aerial robot with the beacon is part of the
WSN and can be used as a data mule while the positions are
being calibrated. Moreover, the current ideas can be used in
UAVs capable of deploying nodes in the framework of the
AWARE project.

If the path planning capabilities of the mobile robot takes
into account the calibration mission, optimal paths from the
point of view of network calibration could be devised.

Experiments have shown how the belief on the position of
the node can be modeled as a Normal distribution when the
Particle Filter converges (see Fig. 7). Future work will con-
sider the particle filter estimation as the initial position of the
nodes as in [13]. Then, the estimated mean and covariances
will be used in an Unscented Kalman Filter (UKF) [14] that
will update this estimation with the measurements not only
from the beacon node but from the rest of the network nodes
too. The likelihood function of Section III-B will be used
to update the sigma-points of the UKF. These filters can be
efficiently implemented in the nodes and easily decentralized,
so that the information from neighbor nodes can be included
in the estimation process.

Finally, in this paper, the likelihood function that relates
RSSI and distance was learnt off-line and then maintained
fixed. Improvements to re-estimate online the functions by
using methods like Expectation-Maximization [15] will be
researched.
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