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Abstract—In this paper, we discuss a distributed algorithm
for task allocation that solves the Initial Formation Problem
within the multi-robot domain. The algorithm has been inte-
grated in a multi-robot architecture that couples the task allo-
cation behavior with a path planning and navigation module.
Analysis of the efficiency of the tak allocation methodology is
provided that compares results from a realistic scenario that
simulates achieving multiple science measurements within an
Arctic terrain environment.

I. INTRODUCTION

In future science exploration missions, there is a desire

to send multiple, instrumented rovers to scientific sites of

interest to expand our understanding of both the history

and future of life. Mars exploration missions are focused

on finding signs of life to expand our comprehension of

where life began. Earth exploration missions are focused on

resolving theories on how life evolved and how it might be

effected in the future. These mission examples all have one

common theme – human scientists and autonomous rovers

must work together to navigate in extreme environments in

order to collect scientific measurements of interest. This type

of problem, that of navigating to multiple science sites using

multiple rovers, can be cast as a task allocation problem.

In the last years, different approaches have been used

to solve the general task allocation problem: centralized

[2], hybrid [3] and distributed [18]. However, there are

other types of problems that cannot be solved with these

algorithms, for example, the Initial Formation Problem [8].

This type of problem becomes really important within the

field of formation control [9] where using local information

and control laws, the distributed algorithm is able to drive a

given formation error to zero. However, as it is stated in [10],

these algorithms require a first step that assigns the robots to

the formation positions while taking into account their initial

positions, i.e., answer the question who goes where? Usually

this problem has been solved using centralized solutions such

as the Hungarian method [11], since the Initial Formation

Problem can be viewed as a classical job assignment problem

where robots are the workers and tasks are the jobs to be

executed by those workers. However, this type of solution

requires that all the robots have to communicate between

each other and has all the disadvantages related to centralized

systems: low fault tolerant, computational complexity and

slow response for dynamic changes in the environment.

Furthermore, it is not possible to take advantage of all the

good characteristics related to distributed algorithms if part

of your problem has to be solved in a centralized way.

Regardless of the fact that the multi-robot task allocation

problem has been studied for the last decade, most of the

algorithms have been tested assuming idealistic simulations

and only considering waypoint tasks where the cost is just

the euclidean distance. Only a few have been tested on real

robots [1], [4], [7] and they usually deal with proving of

concepts.

For these reasons, it is important to come up with an

algorithm that solves the Initial Formation Problem while

taking into account the realisms of operating in extreme

environments. As such, in this paper, we discuss our ap-

proach to the Initial Formation Problem using a distributed

based approach [5] and analyze its efficiency in a realistic

scenario. The paper is organized as follows. In the next

section, a basic market-based (BS) algorithm that solves the

Initial Formation Problem will be explained. Also, different

modifications of the BS algorithm that improve its results

will be addressed. Section III discusses the integration of

task allocation, path planning and navigation. The complete

robotic system, the relations between the different parts and

the algorithms used are also explained in Section III. In

Section IV, different simulations are shown and discussed.

Firstly, the task allocation algorithms are simulated with a

simple simulator that only considers the euclidean distance

as the cost and in a world without obstacles. Secondly, these

results are compared with the ones obtained in an obstacle-

strewn world in which the task allocation algorithms are

integrated with different path planning algorithms (A∗ and

RRTs). Finally, conclusions and future work are discussed in

Section V.

II. TASK ALLOCATION ALGORITHM

A market-based approach has been chosen to solve the

Initial Formation Problem using the Contract Net Protocol

[17] where two roles are played dynamically by robots:

auctioneer and bidders. The auctioneer is the agent in charge

of announcing the tasks and selecting the best bid from all



Fig. 1. Difference in cost between the optimal allocation and the one
obtained with the basic market-based algorithm.

the received bids. In our case the best bid is the one with

the lowest cost.

A. BS: Basic Market-Based Approach

We have implemented a basic algorithm [8] where the cost

for bidding is equal to the distance from the robot to the task.

The basic idea is that each robot can only own one task, so

it will keep the task with the lowest cost. If it wins a new

task that has a lower cost than the one already won, it will

sell the old task to the robot with the best bid but worse

than its own bid. The best bid worse than the robot’s bid is

selected in order to avoid infinite loops in the negotiation.

This scenario could happen when two robots have the best

bids for at least three tasks [8].

There are situations where this algorithm does not obtain

good results which usually happens when a robot wins a task

that is the worst one for its own interest, as can be seen in

Figure 1. In this example, the global cost obtained with the

market-based algorithm is 66.67% greater than the optimal
allocation.

B. RTMA: Robot and Task Mean Allocation algorithm

In order to solve the initial formation problem, the task

allocation algorithm has to solve two main problems:

• How do I calculate the bid for a certain task?

• If I won more than one task, how do I determine which

one to keep?

The RTMA algorithm tries to improve the original algo-

rithm in these two aspects, while keeping the advantages of

the market-based approach: fault tolerance, independent from

the number of robots and high adaptation to changes in the

environment using reallocations. Firstly, it chooses in a more

clever way the task that must be kept when a robot wins

more than one task. This is accomplished using additional

knowledge available to the system. Instead of keeping the

task with the smallest cost to the robot, the task with highest

difference between the cost to the robot and the mean of its

costs to all the robots is selected. In other words, suppose

that there are a finite number of tasks T and robots N and

robot Rk has won tasks Ti and Tj . In this case, robot Rk

will keep task Ti if and only if:

Fig. 2. Scheme that shows the integration of a task allocation algorithm
in a complete system ready to be used in a real world application. The path
planning algorithm is used to calculate the cost of the tasks and as an input
for the path follower algorithm which is combined with obstacle avoidance
using the DAMN architecture.
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where C(Ra, Tb) is the cost to execute task Tb by robot Ra.

Secondly, the cost function is changed. In the original

algorithm the cost function used to calculate the bid for a

certain task is the distance between the robot and the task.

However, in this improved algorithm the cost function is the

difference between the distance of the robot and the task

minus the mean of the distances between that robot and all

the tasks, i.e.:

C(Ri, Tj) = D(Ri, Tj) −

N∑

k=1

D(Ri, Tk)

N
(2)

where C(Ri, Tj) is the cost function for robot Ri and task

Tj and D(Ra, Tb) is the distance between robot Ra and task

Tb.

When one robot wins two tasks, instead of comparing the

distances to choose the closest one, it will compare the costs

using the new cost function and it will select the task with

the lowest cost for itself.

III. INTEGRATION OF THE TASK ALLOCATION

ALGORITHM WITHIN A ROBOTIC SYSTEM

We have implemented our task allocation algorithms using

a multi-robot architecture [13] that allows us to integrate the

algorithms within a complete robotic system ready to be used

in real world applications. As can be seen in Figure 2, in each

robot, the task allocation algorithm has been integrated with

a path planning algorithm and the execution of the tasks are

within a behavior architecture that combines a path following

algorithm with obstacle avoidance.



As was commented in Section I, one of the main objectives

of this paper is to compare the effect of the path planning

algorithm on the efficiency of the task allocation algorithms.

For that reason, two of the most popular path planning algo-

rithms have been implemented: A∗ algorithm [14] and RRTs

(Rapidly-exploring Random Trees) [12]. The fist algorithm

is based on a heuristic estimator to find the optimal solution

faster than general search algorithms such as breadth-first or

depth-first search. Even so, for robotic applications, the A∗

algorithm still requires a significant amount of processing

power. RRTs is also a search algorithm that has a random

nature and the quality of the solution cannot be determined

a priori, but it is much faster than A∗ especially for large

state spaces. This algorithm works like a search tree that

starts from an initial state and is expanded by performing

incremental motions towards the direction of random points.

The main difference between this algorithm and a random

walk is that the latter suffers from a bias towards places

already visited, while RRTs works in the opposite manner

by being biased towards places not yet visited.

For navigation, we have selected the DAMN architecture

[16] to combine the obstacle avoidance and path follower

algorithms. This architecture was designed to combine dif-

ferent behaviors, specially, for mobile robots in unknown and

dynamic enviroments. Each of the behaviors votes for a set

of possible actuators values satisfying its objectives. Then,

an arbitrer combines those votes and generates actions which

reflects the behaviors objectives and priorities. Regarding the

behaviors, a laser scanner was used as the sensor for the

obstacle avoidance and the Pure Pursuit algorithm [15] has

been used as the path follower. The Pure Pursuit algorithm

geometrically determines the curvature that will drive the

vehicle to a chosen path point defined as one lookahead

distance from the current position of the robot. Finally, we

have used Player/Gazebo [6] to simulate the environment and

the robots (see Figure 3).

IV. SIMULATIONS AND DISCUSSION

A multi-robot simulator has been used to test the decen-

tralized algorithms presented in this paper. This simulator is

based on an architecture designed for heterogeneous robots

[13] and divided into three layers. The highest layer is

independent from the type of robot and is the one aware

of the existence of other robots. Thus, the task allocation

algorithm is implemented in this layer and can be used,

without modification, in both simulations and real robots.

Moreover, the communication among robots is based on IP,

so it can also be used as an interprocess communication

method for simulations. The other two layers are used to

execute the different tasks allocated to the robot and make

easier the creation of new algorithms by using a modular and

component-based architecture.

A. Ideal simulations

In our first set of tests, we have simulated our algorithms in

a simple simulator that does not consider most of the real-

world concerns. The different algorithms have been tested

Fig. 3. Snapshot of the simulator Player/Gazebo in a realistic scenario
that simulates an Arctic terrain with obstacles. The upper image represents
a bird’s-eye view of the simulated world. The bottom image is a close view
of one of the robots.

using initial positions of the robots and formations calculated

at random in a virtual world of 1000x1000 meters without
obstacles. The simulations have been accomplished using a

variety of cases in which the number of robots and tasks

ranged from 2 up to 20, and for every case one hundred

simulations were run. These results are shown in Table I

where, in each cell, the mean of the global cost and the error

in percentage in comparison with the optimal solution are

presented. The optimal solution has been calculated using the

Hungarian method [11]. In order to show the results clearly,

only the error in percentage is shown in Figure 4. It can be

observed that the RTMA algorithm obtains better results than

the BS algorithm, although both algorithms present efficient

results up to 8 robots and tasks where the largest error is less

than 10%. For more than 8 robots, only the RTMA algorithm
obtained good results, with a maximum error of 5.98% in
the case of 20 robots. As can be seen in Figure 4, the error

with the optimal solution is bounded by a linear function

for all the algorithms with the number of robots and tasks.

However, the RTMA algorithm is the one with lowest slope.

It is also important to point out that for 2 robots and tasks
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Fig. 4. Error in percentage in comparison with the optimal solution for the
two types of algorithms and calculating the inital positions of the robots and
the points of the formations at random over 100 simulations. The RTMA
algorithm obtains better results than the BS algorithm for all the cases.

Tasks &
Robots

BS RTMA Optimum

2 909.35

(2.54%)
886.84

(0.0%)
886.84

4 1473.52

(5.27%)
1413.45

(0.98%)
1399.73

6 2020.13

(7.64%)
1908.85

(1.71%)
1876.77

8 2443.57

(9.51%)
2302.90

(3.21%)
2231.27

10 2865.81

(11.05%)
2666.06

(3.30%)
2580.65

12 3233.25

(12.06%)
2997.34

(3.88%)
2885.35

15 3749.97

(12.49%)
3491.44

(4.74%)
3333.55

20 4639.68

(15.08%)
4272.99

(5.98%)
4031.69

TABLE I

RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER OF

ROBOTS AND TASKS OVER 100 SIMULATIONS PER EACH CASE. IN EACH

CELL THE MEAN OF THE GLOBAL COST AND THE ERROR IN PERCENTAGE

WITH THE OPTIMAL SOLUTION ARE PRESENTED.

the RTMA algorithm always obtains the optimal solution.

B. Realistic simulations

The application that we have chosen to simulate our

complete robotic system is a science data collection scenario.

The main idea is that scientists can use a team of robots

to collect data from a hazardous environment, such as the

Arctic. In order to facilitate the interface with the robots,

scientists just need to point at the areas that they consider

interesting from a satellite image as is illustrated in the

upper image of Figure 3. The robots, using the commented

task allocation algorithms, will divide the different areas and

navigate autonomously towards them.

We have used three different scenarios to test our complete

robotic system for this type of application. The first scenario

(see Figure 5) only has one obstacle in the middle. The

Fig. 5. Scenario with one obstacle (9mx9m) in the middle. The paths
show the solution of one of the random missions obtained using the BS
task allocation with the RRTs algorithm.

Fig. 6. Scenario with two obstacles (6mx6m each). The paths show the
solution of one of the random missions obtained using the BS task allocation
with the A

∗ algorithm.

second scenario considers two smaller obstacles as can be

observed in Figure 6. The last scenario considers five small

obstacles (see Figure 7). Also, Figures 5, 6 and 7 show

the solution obtained using the BS algorithm and the path

followed by the robots and calculated using the RRTs and A∗

algorithms. Due to the complexity of these simulations, only

10 simulations have been run per case where the position of

the robots and tasks have been calculated at random avoiding

the areas considered obstacles in a 40mx40m world.

We first ran our simulations using the A∗ for path plan-

ning. The results obtained from these simulations are showed

in Table II where each cell represents the mean of the

global cost over 10 missions, i.e., the sum of the distance

traveled by all the robots. It can be seen that the RTMA

algorithm still obtains better results than the BS algorithm

when it is integrated in a complete robotic system. It can be

observed that the results obtained with the complete system

are worse, in comparison with the optimal solution, than

the results obtained in the previous section (see Table I)



Fig. 7. Scenario with five obstacles (4mx4m each). The paths show the
solution of one of the random missions obtained using the BS task allocation
with the A

∗ algorithm.

since a more realistic scenario has been considered. Also,

the improvements obtained with the RTMA, in comparison

with the BS algorithm, is larger than in the previous results.

Therefore, the consideration of a realistic scenario reduces

the efficiency of the distributed algorithms in comparison

with the optimal solution, but also increases the differences

between the algorithms and the effect of the improvements

introduced in this paper.

The same random missions have been used for the optimal

solution and the two task allocation algorithms. The optimal

solution has been calculated using the A∗ algorithm with the

Hungarian method [11], i.e., all the different optimal paths

between every robot and task have been calculated using the

A∗ algorithm, then the distance of all these paths have been

used as the values of the cost matrix that represents the task

allocation problem as a job assignment problem. Finally, the

Hungarian method has been applied to that cost matrix to

calculate the optimal assignment.

Next, we tested our task allocation algorithms with the

RRTs instead of the A∗ algorithm. The results are shown

in Table III. Firstly, it can be observed that these results

are worse than using the A∗ algorithm. Also, the standard

deviations are higher than in the previous case. This makes

sense since the RRTs algorithm does not ensure any kind of

efficiency of the solution. Finally, it can be observed how

the differences between the two algorithms are smaller, and

therefore, the variability of the solutions obtained with the

RRTs algorithm affects negatively the improvements applied

in the RTMA algorithm.

In summary, it has been shown that A∗ algorithm obtains

better results for our task allocation algorithms. However,

the RRTs algorithm should not be completely discarded

since A∗ might be too slow to be applied in some real-

world scenarios, specially, when robots present differential

constraints (nonholonomic robots).

Tasks &
Robots

Number of
obstacles

BS RTMA Optimum

4 1 88.85

(22.44)
24.84%

82.28

(27.55)
15.61%

71.17

4 2 79.38

(29.46)
31.44%

71.25

(30.31)
17.98%

60.39

4 5 87.02

(17.95)
25.88%

76.79

(14.51)
11.08%

69.13

6 1 118.47

(23.82)
39.24%

101.63

(38.20)
19.45%

85.08

6 2 105.59

(23.49)
31.80%

93.10

(28.22)
16.21%

80.11

6 5 117.57

(38.44)
57.30%

88.80

(20.82)
18.81%

74.74

8 1 150.44

(41.13)
31.41%

140.67

(32.41)
22.88%

114.48

8 2 117.24

(57.65)
38.25%

99.21

(40.08)
16.99%

84.80

8 5 147.24

(49.76)
45.58%

124.00

(38.18)
22.60%

101.14

TABLE II

RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER OF

ROBOTS, TASKS AND OBSTACLES OVER 10 SIMULATIONS PER EACH

CASE USING THE A∗ ALGORITHM. EACH CELL REPRESENTS THE MEAN

OF THE GLOBAL COST, THE STANDARD DEVIATION WITHIN BRACKETS

AND THE ERROR IN PERCENTAGE IN COMPARISON WITH THE OPTIMAL

SOLUTION. THE OBSTACLES ARE DISTRIBUTED AS CAN BE SEEN IN

FIGURES 5, 6 AND 7.

V. CONCLUSIONS AND FUTURE WORK

Two different task allocation algorithms that solve the

Initial Formation Problem have been described. The first one

(BS) based on a market approach is the simplest algorithm

but obtains the worst results in all the cases. The other

algorithm (RTMA) uses the mean of the costs (considering

all the tasks associated to a robot and all the robots for a

specific task) in order to increase the information about the

whole system and improve the results, but always keeping

the distributed computation of the algorithm.

These algorithms have been integrated in a robotic sys-

tem where the cost of the waypoint tasks are calculated

using a path planning algorithm. The execution of the tasks

is implemented using a behavior approach where obstacle

avoidance and path following are combined using the DAMN

architecture.

Different types of simulations have been executed. Firstly,

both algorithms have been simulated in a simple simulator

where no obstacles have been considered and the cost of the

waypoint tasks are just the euclidean distance. On the other

hand, these algorithms have been simulated using a realistic

simulator with static obstacles and using two different path

planning algorithms (A∗ and RRTs). The results from all



Tasks &
Robots

Number of
obstacles

BS RTMA Optimum

4 1 96.60

(28.20)
35.73%

92.56

(29.88)
30.05%

71.17

4 2 83.43

(30.74)
38.15%

80.70

(31.89)
33.63%

60.39

4 5 98.18

(22.00)
42.02%

89.37

(17.51)
29.28%

69.13

6 1 123.40

(41.68)
45.04%

115.29

(43.01)
35.51%

85.08

6 2 111.98

(36.73)
39.78%

110.60

(31.75)
38.06%

80.11

6 5 115.61

(35.03)
54.68%

106.48

(27.26)
42.47%

74.74

8 1 165.91

(39.29)
44.93%

149.14

(35.99)
30.28%

114.48

8 2 120.73

(43.25)
42.37%

118.21

(40.09)
39.40%

84.80

8 5 159.89

(48.97)
58.09%

143.34

(34.52)
41.72%

101.14

TABLE III

RESULTS COMPUTED FOR FORMATIONS WITH DIFFERENT NUMBER OF

ROBOTS, TASKS AND OBSTACLES OVER 10 SIMULATIONS PER EACH

CASE USING THE RRTS ALGORITHM. EACH CELL REPRESENTS THE

MEAN OF THE GLOBAL COST, THE STANDARD DEVIATION WITHIN

BRACKETS AND THE ERROR IN PERCENTAGE IN COMPARISON WITH THE

OPTIMAL SOLUTION. THE OBSTACLES ARE DISTRIBUTED AS CAN BE

SEEN IN FIGURES 5, 6 AND 7.

these simulations show that the implementation of a task

allocation algorithm, within a complete robotic system, gets

worse results in comparison with the optimal solution than

in a idealistic simulator. Also, it has been observed that the

selection of the path planning algorithm affects the efficiency

of the task allocation algorithm and it could reduce the

effect of the improvements initially designed to obtain better

solutions, as happens in the RTMA algorithm when it is used

together with the RRTs algorithm.

Future work includes the implementation of these task

allocation algorithms with real robots and the proof that the

same propertities are still obtained in a real implementation.

Also, we will seek to study the effect of mobile obstacles on

the efficiency of the task allocation algorithms.
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